Skip to main content
Log in

Combined in Vitro-in Silico Approach to Predict Deposition and Pharmacokinetics of Budesonide Dry Powder Inhalers

  • RESEARCH PAPER
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

A combined in vitro – in silico methodology was designed to estimate pharmacokinetics of budesonide delivered via dry powder inhaler.

Methods

Particle size distributions from three budesonide DPIs, measured with a Next Generation Impactor and Alberta Idealized Throat, were input into a lung deposition model to predict regional deposition. Subsequent systemic exposure was estimated using a pharmacokinetic model that incorporated Nernst-Brunner dissolution in the conducting airways to predict the net influence of dissolution, mucociliary clearance, and absorption.

Results

DPIs demonstrated significant in vitro differences in deposition, resulting in large differences in simulated regional deposition in the central conducting airways and the alveolar region. Similar but low deposition in the small conducting airways was observed with each DPI. Pharmacokinetic predictions showed good agreement with in vivo data from the literature. Peak systemic concentration was tied primarily to the alveolar dose, while the area under the curve was more dependent on the total lung dose. Tracheobronchial deposition was poorly correlated with pharmacokinetic data.

Conclusions

Combination of realistic in vitro experiments, lung deposition modeling, and pharmacokinetic modeling was shown to provide reasonable estimation of in vivo systemic exposure from DPIs. Such combined approaches are useful in the development of orally inhaled drug products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

DPI:

Dry powder inhaler

MMAD:

Mass median aerodynamic diameter

NGI:

Next Generation Impactor

AUC 24 :

Area under the curve (24 h)

F BA :

Oral bioavailability

F i :

Fraction of dose depositing in ith compartment

K diss,TB :

Effective dissolution rate in tracheobronchial region

P m :

Measured Pressure

P ref :

Reference Pressure

Q peak :

Peak inhalation flowrate

T m :

Measured Temperature

T ref :

Reference Temperature

V ASL,i :

Volume of airway surface liquid in ith airway compartment

V C :

Volume of central compartment

V d,ss :

Volume of distribution at steady state

c i :

Drug concentration in ith airway compartment

c max :

Maximum serum concentration in central compartment

c s :

Drug solubility

d g,50 :

Particle geometric mean diameter

k 10 :

Elimination rate constant

k 12 :

Central to peripheral rate constant

k 21 :

Peripheral to central rate constant

k a :

Oral absorption rate constant

k ALV :

Alveolar region absorption rate constant

k diss,ALV :

Dissolution rate constant in alveolar region

k muc,i :

Mucociliary rate constant for ith airway compartment

k TB :

Tracheobronchial region absorption rate constant

m i,1 :

Drug mass (solid) in ith airway compartment

m i,2 :

Drug mass (dissolved) in ith airway compartment

t max :

Time at which maximum serum concentration occurs

t total :

Duration of inhalation

ρ P :

Particle density

h :

Diffusion layer thickness

CL :

Clearance

D :

Diffusion coefficient

Q :

Flowrate

R :

Inhaler resistance

S :

Surface area of particles undergoing dissolution

c :

Drug concentration

m :

Drug mass

t :

Time

A:

Gastrointestinal tract compartment

ALV:

Alveolar

ASL:

Airway surface liquid

DPI:

At the inlet of the inhaler

DPI exit:

Immediately downstream of inhaler mouthpiece

HBM:

Breathing machine line

P:

Peripheral compartment

std:

Standard flowrate

supply:

Building air supply line

TB:

Tracheobronchial

vacuum:

Vacuum line

vol:

Volumetric flowrate

X:

Central compartment

References

  1. Hossny E, Rosario N, Lee BW, Singh M, El-Ghoneimy D, Soh JY, et al. The use of inhaled corticosteroids in pediatric asthma: update. World Allergy Organ J. 2016;9(1):1–24.

    Google Scholar 

  2. Chung KF, Wenzel SE, Brozek JL, Bush A, Castro M, Sterk PJ, et al. International ERS/ATS guidelines on definition, evaluation and treatment of severe asthma. Eur Respir J. 2014;43(2):343–73.

    CAS  Google Scholar 

  3. Vogelmeier CF, Criner GJ, Martinez FJ, Anzueto A, Barnes PJ, Bourbeau J, et al. Global strategy for the diagnosis, management, and prevention of chronic obstructive lung disease 2017 report. Am J Respir Crit Care Med. 2017;195(5):557–82.

    CAS  Google Scholar 

  4. Pittas AG, Westcott GP, Balk EM. Efficacy, safety, and patient acceptability of Technosphere inhaled insulin for people with diabetes: a systematic review and meta-analysis. Lancet Diabetes Endocrinol. 2015;3(11):886–94.

    CAS  Google Scholar 

  5. San L, Estrada G, Oudovenko N, Montañés F, Dobrovolskaya N, Bukhanovskaya O, et al. PLACID study: a randomized trial comparing the efficacy and safety of inhaled loxapine versus intramuscular aripiprazole in acutely agitated patients with schizophrenia or bipolar disorder. Eur Neuropsychopharmacol. 2018;28(6):710–8.

    CAS  Google Scholar 

  6. Olanow CW, Stocchi F. Levodopa: a new look at an old friend. Mov Disord. 2018;33(6):859–66.

    Google Scholar 

  7. Martin AR, Moore CP, Finlay WH. Models of deposition, pharmacokinetics, and intersubject variability in respiratory drug delivery. Expert Opin Drug Deliv. 2018;15(12):1175–88.

    CAS  Google Scholar 

  8. Finlay WH. The mechanics of inhaled pharmaceutical aerosols : an introduction. 2nd ed. San Diego: Academic Press; 2019. 306 p.

    Google Scholar 

  9. Ruge CC, Kirch J, Lehr CM. Pulmonary drug delivery: from generating aerosols to overcoming biological barriers-therapeutic possibilities and technological challenges. Lancet Respir Med. 2013;1(5):402–13.

    CAS  Google Scholar 

  10. Loira-Pastoriza C, Todoroff J, Vanbever R. Delivery strategies for sustained drug release in the lungs. Adv Drug Deliv Rev. 2014;75:81–91.

    CAS  Google Scholar 

  11. Koullapis P, Kassinos SC, Muela J, Perez-Segarra C, Rigola J, Lehmkuhl O, et al. Regional aerosol deposition in the human airways: the SimInhale benchmark case and a critical assessment of in silico methods. Eur J Pharm Sci. 2018;113(June 2017):77–94.

    CAS  Google Scholar 

  12. Walenga RL, Babiskin AH, Zhao L. In Silico methods for development of generic drug–device combination orally inhaled drug products. CPT Pharmacometrics Syst Pharmacol. 2019;8(6):359–70.

    CAS  Google Scholar 

  13. Wei W, Hindle M, Kaviratna A, Huynh B, Delvadia R, Sandell D, et al. In Vitro Tests for Aerosol Deposition . VI : Realistic Testing with Different Mouth – Throat Models and In Vitro — In Vivo Correlations for a Dry Powder. J Aerosol Med Pulm Drug Deliv. 2018;31(0):1–14.

    Google Scholar 

  14. Ruzycki CA, Martin AR, Finlay WH. An exploration of factors affecting in vitro deposition of pharmaceutical aerosols in the Alberta idealized throat. J Aerosol Med Pulm Drug Deliv. 2019;32(6):405–17.

    CAS  Google Scholar 

  15. Bhagwat S, Schilling U, Chen MJ, Wei X, Delvadia R, Absar M, et al. Predicting pulmonary pharmacokinetics from in vitro properties of dry powder inhalers. Pharm Res. 2017;34(12):2541–56.

    CAS  Google Scholar 

  16. Bäckman P, Tehler U, Olsson B. Predicting exposure after Oral inhalation of the selective glucocorticoid receptor modulator, AZD5423, based on dose, deposition pattern, and mechanistic modeling of pulmonary disposition. J Aerosol Med Pulm Drug Deliv. 2017;30(2):108–17.

    Google Scholar 

  17. Boger E, Fridén M. Physiologically based pharmacokinetic/Pharmacodynamic modeling accurately predicts the better Bronchodilatory effect of inhaled versus Oral salbutamol dosage forms. J Aerosol Med Pulm Drug Deliv. 2019;32(1):1–12.

    CAS  Google Scholar 

  18. Caniga M, Cabal A, Mehta K, Ross DS, Gil MA, Woodhouse JD, et al. Preclinical experimental and mathematical approaches for assessing effective doses of inhaled drugs, using Mometasone to support human dose predictions. J Aerosol Med Pulm Drug Deliv. 2016;29(4):362–77.

    CAS  Google Scholar 

  19. Martin AR, Finlay WH. Model calculations of regional deposition and disposition for single doses of inhaled liposomal and dry powder ciprofloxacin. J Aerosol Med Pulm Drug Deliv. 2018;31(1):49–60.

    CAS  Google Scholar 

  20. Weber B, Hochhaus G. A pharmacokinetic simulation tool for inhaled corticosteroids. Am Assoc Pharm Sci J. 2013;15(1):159–71.

    CAS  Google Scholar 

  21. Byron PR. Prediction of drug residence times in regions of the human respiratory tract following aerosol inhalation. J Pharm Sci. 1986;75(5):433–8.

    CAS  Google Scholar 

  22. Gonda I. Drugs administered directly into the respiratory tract: modeling of the duration. J Pharm Sci. 1988;77(4):340–6.

    CAS  Google Scholar 

  23. Soulele K, Macheras P, Karalis V. On the pharmacokinetics of two inhaled budesonide/formoterol combinations in asthma patients using modeling approaches. Pulm Pharmacol Ther. 2018;48(July 2017):168–78.

    CAS  Google Scholar 

  24. Lee SL, Saluja B, García-Arieta A, Santos GML, Li Y, Lu S, et al. Regulatory considerations for approval of generic inhalation drug products in the US, EU, Brazil, China, and India. AAPS J. 2015;17(5):1285–304.

    CAS  Google Scholar 

  25. Lu D, Lee SL, Lionberger RA, Choi S, Adams W, Caramenico HN, et al. International guidelines for bioequivalence of locally acting orally inhaled drug products: similarities and differences. AAPS J. 2015;17(3):546–57.

    CAS  Google Scholar 

  26. Delvadia RR, Wei X, Longest PW, Venitz J, Byron PR. In vitro tests for aerosol deposition. IV: simulating variations in human breath profiles for realistic DPI testing. J Aerosol Med Pulm Drug Deliv. 2016;29(2):196–206.

    Google Scholar 

  27. Weers J, Clark A. The impact of inspiratory flow rate on drug delivery to the lungs with dry powder inhalers. Pharm Res. 2017;34(3):507–28.

    CAS  Google Scholar 

  28. United States Pharmacopeia. USP 44(5) General Chapter <601> Inhalation and Nasal Drug Products - Aerosols, Sprays, and Powders - Performance Quality Tests. 2019.

  29. United States Pharmacopeia. USP 45(2) Informative Chapter <1604> Data Interpretation of Aerodynamic Particle Size Distribution Measurements for Orally Inhaled Products. 2019.

  30. Hinds WC. Aerosol technology : properties, behavior, and measurement of airborne particles. 2nd ed. Hoboken, NJ: Wiley; 1999.

    Google Scholar 

  31. Javaheri E, Shemirani FM, Pichelin M, Katz IM, Caillibotte G, Vehring R, et al. Deposition modeling of hygroscopic saline aerosols in the human respiratory tract : comparison between air and helium – oxygen as carrier gases. J Aerosol Sci. 2013;64:81–93.

    CAS  Google Scholar 

  32. Finlay WH, Lange CF, King M, Speert DP. Lung Delivery of Aerosolized Dextran. 2000;161:91–7.

    CAS  Google Scholar 

  33. International Commission on Radiological Protection. Human respiratory tract model for radiological protection : a report of a task group of the International Commission on Radiological Protection. Vols. 24 1–3. Oxford, Eng. :Tarrytown, N.Y.: published for the International Commission on Radiological Protection by Pergamon; 1994. 482 p.

  34. Chan TL, Lippmann M. Experimental measurements and empirical modelling of the regional deposition of inhaled particles in humans. Am Ind Hyg Assoc J. 1980;41:399–409.

    CAS  Google Scholar 

  35. Lange CF, Hancock REW, Samuel J, Finlay WH. In vitro aerosol delivery and regional airway surface liquid concentration of a liposomal cationic peptide. J Pharm Sci. 2001;90(10):1647–57.

    CAS  Google Scholar 

  36. May S, Jensen B, Weiler C, Wolkenhauer M, Schneider M, Lehr CM. Dissolution testing of powders for inhalation: influence of particle deposition and modeling of dissolution profiles. Pharm Res. 2014;31(11):3211–24.

    CAS  Google Scholar 

  37. Ryrfeldt A, Andersson P, Edsbacker S, Tonnesson M, Davies D, Pauwels R. Pharmacokinetics and metabolism of budesonide, a selective glucocorticoid. Eur J Respir Dis. 1982;63(S 122):86–95.

  38. Thorsson L, Edsbacker S, Conradson TB. Lung deposition of budesonide from Turbuhaler® is twice that from a pressurized metered-dose inhaler P-MDI. Eur Respir J. 1994;7(10):1839–44.

    CAS  Google Scholar 

  39. Hochhaus G, Möllmann H, Derendorf H, Gonzalez-Rothi RJ. Pharmacokinetic/pharmacodynamic aspects of aerosol therapy using glucocorticoids as a model. J Clin Pharmacol. 1997;37(10):881–92.

    CAS  Google Scholar 

  40. Yates JWT, Arundel PA. On the volume of distribution at steady state and its relationship with two-compartmental models. J Pharm Sci. 2008;97(1):111–22.

    CAS  Google Scholar 

  41. Dokoumetzidis A, Macheras P. A century of dissolution research: from Noyes and Whitney to the biopharmaceutics classification system. Int J Pharm. 2006;321(1–2):1–11.

    CAS  Google Scholar 

  42. Schürch S, Gehr P, Im Hof V, Geiser M, Green F. Surfactant displaces particles toward the epithelium in airways and alveoli. Respir Physiol. 1990;80(1):17–32.

    Google Scholar 

  43. Hastedt JE, Bäckman P, Clark AR, Doub W, Hickey A, Hochhaus G, et al. Scope and relevance of a pulmonary biopharmaceutical classification system AAPS/FDA/USP workshop march 16-17th, 2015 in Baltimore. MD Am Assoc Pharm Sci Open. 2016;2(1):1.

    Google Scholar 

  44. Hintz RJ, Johnson KC. The effect of particle size distribution on dissolution rate and oral absorption. Int J Pharm. 1989;51(1):9–17.

    CAS  Google Scholar 

  45. Argenti D, Shah B, Heald D. A study comparing the clinical pharmacokinetics, pharmacodynamics, and tolerability of triamcinolone acetonide HFA-134a metered-dose inhaler and budesonide dry-powder inhaler following inhalation administration. J Clin Pharmacol. 2000;40(5):516–26.

    CAS  Google Scholar 

  46. Duddu SP, Sisk SA, Walter YH, Tarara TE, Trimble KR, Clark AR, et al. Improved lung delivery from a passive dry powder inhaler using an engineered PulmoSphere® powder. Pharm Res. 2002;19(5):689–95.

    CAS  Google Scholar 

  47. Harrison TW, Tattersfield AE. Plasma concentrations of fluticasone propionate and budesonide following inhalation from dry powder inhalers by healthy and asthmatic subjects. Thorax. 2003;58(3):258–60.

    CAS  Google Scholar 

  48. Lähelmä S, Kirjavainen M, Kela M, Herttuainen J, Vahteristo M, Silvasti M, et al. Equivalent lung deposition of budesonide in vivo: a comparison of dry powder inhalers using a pharmacokinetic method. Br J Clin Pharmacol. 2005;59(2):167–73.

    Google Scholar 

  49. Mollmann H, Wagner M, Krishnaswami S, Dimova H, Tang Y, Falcoz C, et al. Single-dose and steady-state pharmacokinetic and pharmacodynamic evaluation of therapeutically clinically equivalent doses of inhaled fluticasone propionate and budesonide, given as diskus?? Or turbohaler?? Dry-powder inhalers to healthy subjects. J Clin Pharmacol. 2001;41(12):1329–38.

    CAS  Google Scholar 

  50. Thorsson L, Edsbacker S, Kallen A, Lofdahl C-G. Pharmacokinetics and systemic activity of fluticasone via Diskus and pMDI, and of budesonide via Turbuhaler. Br J Clin Pharmacol. 2001;52:529–38.

    CAS  Google Scholar 

  51. Mortimer KJ, Tattersfield AE, Tang Y, Wu K, Lewis S, Hochhaus G, et al. Plasma concentrations of fluticasone propionate and budesonide following inhalation: effect of induced bronchoconstriction. Br J Clin Pharmacol. 2007;64(4):439–44.

    CAS  Google Scholar 

  52. Hämäläinen KM, Granander M, Toivanen P, Malinen A. Assessment of the systemic effects of budesonide inhaled from Easyhaler® and from Turbuhaler® in healthy male volunteers. Respir Med. 2001;95(11):863–9.

    Google Scholar 

  53. Mylan Products Ltd UK. Budelin Novolizer 200 micrograms per actuation inhalation powder [Internet]. 2018 [cited 2020 Jun 22]. Available from: https://www.medicines.org.uk/emc/product/9715/smpc

  54. Meda Pharma GmbH. Budelin Novolizer 200 mikrogramov/odmerek prašek za inhaliranje [Internet]. 2017 [cited 2020 Jun 22]. Available from: http://www.cbz.si/cbz/bazazdr2.nsf/o/B0174ADF66EBFFE9C12579C2003F4EC8/$File/s-018681.pdf

  55. Kaiser H, Aaronson D, Dockhorn R, Edsbäcker S, Korenblat P, Källén A. Dose-proportional pharmacokinetics of budesonide inhaled via Turbuhaler®. Br J Clin Pharmacol. 1999;48(3):309–16.

    CAS  Google Scholar 

  56. Parisini I, Cheng SJ, Symons DD, Murnane D. Potential of a cyclone prototype spacer to improve in vitro dry powder delivery. Pharm Res. 2014;31(5):1133–45.

    CAS  Google Scholar 

  57. Yoshida H, Kuwana A, Shibata H, Izutsu K, Goda Y. Comparison of aerodynamic particle size distribution between a next generation Impactor and a Cascade Impactor at a range of flow rates. AAPS PharmSciTech. 2017;18(3):646–53.

    Google Scholar 

  58. Wei X, Hindle M, Delvadia RR, Byron PR. In Vitro Tests for Aerosol Deposition. V: Using Realistic Testing to Estimate Variations in Aerosol Properties at the Trachea. J Aerosol Med Pulm Drug Deliv. 2017;30(5):jamp.2016.1349.

  59. Dehaan WH, Finlay WH. Predicting extrathoracic deposition from dry powder inhalers. J Aerosol Sci. 2004;35:309–31.

    CAS  Google Scholar 

  60. Grgic B, Finlay WH, Burnell PKP, Heenan AF. In vitro intersubject and intrasubject deposition measurements in realistic mouth – throat geometries. J Aerosol Sci. 2004;35:1025–40.

    CAS  Google Scholar 

  61. Walenga RL, Longest PW. Current inhalers deliver very small doses to the lower tracheobronchial airways: assessment of healthy and constricted lungs. J Pharm Sci. 2016;105(1):147–59.

    CAS  Google Scholar 

  62. Hamid Q, Song Y, Kotsimbos TC, Minshall E, Bai TR, Hegele RG, et al. Inflammation of small airways in asthma. J Allergy Clin Immunol. 1997;100(1):44–51.

    CAS  Google Scholar 

  63. N. Richard, Dekhuijzen P. Anti-Inflammatory Drug Targeting in Asthma. Should Inhaled Corticosteroids Reach the Small Airways? Curr Drug ther. 2013;7(4):248–54.

  64. Van Den Berge M, Ten Hacken NHT, Van Der Wiel E, Postma DS. Treatment of the bronchial tree from beginning to end: targeting small airway inflammation in asthma. Allergy Eur J Allergy Clin Immunol. 2013;68(1):16–26.

    Google Scholar 

  65. Ostrovski Y, Dorfman S, Mezhericher M, Kassinos S, Sznitman J. Targeted drug delivery to upper airways using a pulsed aerosol bolus and inhaled volume tracking method. Flow, Turbul Combust. 2019;102(1):73–87.

    CAS  Google Scholar 

  66. Tian G, Longest PW, Su G, Hindle M. Characterization of respiratory drug delivery with enhanced condensational growth using an individual path model of the entire tracheobronchial airways. Ann Biomed Eng. 2011;39(3):1136–53.

    Google Scholar 

  67. Kopsch T, Murnane D, Symons D. Optimizing the entrainment geometry of a dry powder inhaler: methodology and preliminary results. Pharm Res. 2016;33(11):2668–79.

    CAS  Google Scholar 

  68. Borgstrom L, Bondesson E, Moren F, Trofast E, Newman SP. Lung deposition of budesonide inhaled via Turbuhaler®: a comparison with terbutaline sulphate in normal subjects. Eur Respir J. 1994;7(1):69–73.

    CAS  Google Scholar 

  69. Newman SP, Pitcairn GR, Hirst PH, Bacon RE, O’Keefe E, Reiners M, et al. Scintigraphic comparison of budesonide deposition from two dry powder inhalers. Eur Respir J. 2000;16(1):178–83.

    CAS  Google Scholar 

  70. Hirst PH, Bacon RE, Pitcairn GR, Silvasti M, Newman SP. A comparison of the lung deposition of budesonide from Easyhlaler®, Turbuhaler® and pMDI plus spacer in asthmatic patients. Respir Med. 2001;95(9):720–7.

    CAS  Google Scholar 

  71. Hirst PH, Newman SP, Clark DA, Hertog MGL. Lung deposition of budesonide from the novel dry powder inhaler Airmax™. Respir Med. 2002;96(6):389–96.

    CAS  Google Scholar 

  72. Fleming J, Conway J, Majoral C, Katz I, Caillibotte G, Pichelin M, et al. Controlled, parametric, individualized, 2-D and 3-D imaging measurements of aerosol deposition in the respiratory tract of asthmatic human subjects for model validation. J Aerosol Med Pulm Drug Deliv. 2015;28(6):432–51.

    Google Scholar 

  73. Smith DJ, Gaffney EA, Blake JR. Modelling mucociliary clearance. Respir Physiol Neurobiol. 2008;163(1–3):178–88.

    CAS  Google Scholar 

  74. Eriksson J, Thörn H, Sjögren E, Holmstén L, Rubin K, Lennernäs H. Pulmonary dissolution of poorly soluble compounds studied in an ex vivo rat lung model. Mol Pharm. 2019;16:3053–64.

    CAS  Google Scholar 

  75. Bäckman P, Olsson B. Pulmonary Drug Dissolution, Regional Retention and Systemic Absorption: Understanding their Interactions Through Mechanistic Modeling. Respir Drug Deliv 2020. 2020;50:113–22.

  76. Floroiu A, Klein M, Krämer J, Lehr CM. Towards standardized dissolution techniques for in vitro performance testing of dry powder inhalers. Dissolution Technol. 2018;25(3):6–18.

    CAS  Google Scholar 

  77. Hochhaus G, Chen M, Shur J, Kurumaddali A, Schilling U, Jiao Y, et al. Unraveling the pulmonary fate of fluticasone and friends : meeting the physiologic and pharmacokinetic challenges. Respir Drug Deliv. 2020;2020:139–46.

    Google Scholar 

  78. Bäckman P, Arora S, Couet W, Forbes B, de Kruijf W, Paudel A. Advances in experimental and mechanistic computational models to understand pulmonary exposure to inhaled drugs. Eur J Pharm Sci. 2018;113(June 2017):41–52.

    Google Scholar 

  79. Olsson B, Borgström L, Lundbäck H, Svensson M. Validation of a general in vitro approach for prediction of Total lung deposition in healthy adults for pharmaceutical inhalation products. J Aerosol Med Pulm Drug Deliv. 2013;26(6):355–69.

    CAS  Google Scholar 

  80. Chuchalin AG, Kremer H-J, Metzenauer P, O’Keefe E, Hermann R. Clinical equivalence trial on budesonide delivered either by the Novolizer® multidose dry powder inhaler or the Turbuhaler® in asthmatic patients. Respiration. 2002;69(6):502–8.

    CAS  Google Scholar 

  81. Vanto T, Hämäläinen KM, Vahteristo M, Wille S, Njå F, Hyldebrandt N. Comparison of two budesonide dry powder inhalers in the treatment of asthma in children. J Aerosol Med Depos Clear Eff Lung. 2004;17(1):15–24.

    CAS  Google Scholar 

  82. Schweisfurth H, Malinen A, Koskela T, Toivanen P, Ranki-Pesonen M. Comparison of two budesonide powder inhalers, Easyhaler® and Turbuhaler®, in steroid-naïve asthmatic patients. Respir Med. 2002;96(8):599–606.

    CAS  Google Scholar 

  83. Van Den Brink KIM, Boorsma M, Staal-Van Den Brekel AJ, Edsbäcker S, Wouters EF, Thorsson L. Evidence of the in vivo esterification of budesonide in human airways. Br J Clin Pharmacol. 2008;66(1):27–35.

    Google Scholar 

  84. Shao J, Talton J, Wang Y, Winner L, Hochhaus G. Quantitative assessment of pulmonary targeting of inhaled corticosteroids using ex vivo receptor binding studies. AAPS J. 2020;22(2):1–10.

    CAS  Google Scholar 

  85. Ruzycki CA, Yang M, Chan H-K, Finlay WH. Improved prediction of intersubject variability in extrathoracic aerosol deposition using algebraic correlations. Aerosol Sci Technol. 2017;51(6):667–73.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Warren H. Finlay or Andrew R. Martin.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1 – Volumetric Flowrates

The Delvadia et al. semi-idealized inhalation profiles are presented in terms of the volumetric flowrate exiting the inhaler mouthpiece. The setup in Fig. 1 can provide an indirect measure of this flowrate by considering a mass balance of flow. Consider a control volume encompassing the supply line, the breathing machine line, the vacuum line downstream of the NGI, and the airflow entering the DPI. The equation for conservation of mass in this control volume is: \( \frac{dm}{dt}=\sum {\dot{m}}_{\mathrm{in}}-\sum {\dot{m}}_{\mathrm{out}} \) (A-1).

The time rate of change of mass inside the control volume, dm/dt, is considered negligible relative to the magnitudes of the inlet and outlet flows. This assumption is justified by noting that all flows here have Mach numbers less than 0.3 (i.e. flow can be considered incompressible, so changes in density are small) and the walls of the control volume are rigid (i.e. the actual volume of gas contained in the control volume remains constant). Noting that m = ρV (mass equals density times volume), expanding with the product rule for differentiation, and using the above physical reasoning (incompressible flow and a rigid control volume), dm/dt is:

$$ \frac{d m}{d t}=\frac{d\left(\rho V\right)}{d t}=\rho \frac{d V}{d t}+V\frac{d\rho}{d t}=0 $$
(A-2)

The equation for conservation of mass becomes, after expressing the inlet and outlet flows in terms of their volumetric flowrates Qvol,supply, Qvol,HBM, Qvol,vacuum, and Qvol,DPI:

$$ {\rho}_{\mathrm{supply}}{Q}_{\mathrm{vol},\mathrm{supply}}+{\rho}_{\mathrm{DPI}}{Q}_{\mathrm{vol},\mathrm{DPI}}={\rho}_{\mathrm{HBM}}{Q}_{\mathrm{vol},\mathrm{HBM}}+{\rho}_{\mathrm{vacuum}}{Q}_{\mathrm{vol},\mathrm{vacuum}} $$
(A-3)

Equation A - 3 can be recast in terms of standard flowrates using the ideal gas law as follows. The volumetric flowrate at a particular temperature and pressure relates to the standard flowrate as

$$ {Q}_{\mathrm{vol},\mathrm{m}}(t)={Q}_{\mathrm{std},\mathrm{m}}(t)\frac{P_{\mathrm{ref}}}{T_{\mathrm{ref}}}\frac{T_{\mathrm{m}}}{P_{\mathrm{m}}} $$
(A-4)

From the ideal gas law:

$$ {\rho}_{\mathrm{m}}=\frac{P_{\mathrm{m}}}{R_{\mathrm{specific}}{T}_{\mathrm{m}}} $$
(A-5)

Equation A - 4 can then be expressed as

$$ {\rho}_{\mathrm{m}}{Q}_{\mathrm{vol},\mathrm{m}}(t)={\rho}_{\mathrm{ref}}{Q}_{\mathrm{std},\mathrm{m}}\left(t\ \right) $$
(A-6)

Here ρm is the air density at which the volumetric flowrate is desired (dependent on temperature and pressure), while ρref is a reference density (equal to approximately 1.2 kg/m^3 for TSI calibrated flowmeters). With suitable substitutions, Eq. A - 3 takes a simple form as all density terms become ρref. Further rearranging to solve for the unmeasured flowrate entering the DPI, Eq. A - 3 becomes:

$$ {Q}_{\mathrm{std},\mathrm{DPI}}(t)={Q}_{\mathrm{std},\mathrm{HBM}}(t)+{Q}_{\mathrm{std},\mathrm{vacuum}}(t)-{Q}_{\mathrm{std},\mathrm{supply}}(t) $$
(A-7)

Flowrates on the right hand side of Eq. A - 7 are known, allowing for the straightforward calculation of the standard flowrate generated through the DPI, Qstd, DPI. Calculation of the volumetric flowrate exiting the DPI mouthpiece can then be performed using A - 8 (Ruzycki et al., J Aerosol Med Pulm Drug Deliv 2019;32 (6):405–417).

$$ {Q}_{\mathrm{vol},\mathrm{DPI}\kern0.15em \mathrm{exit}}(t)={Q}_{\mathrm{std},\mathrm{DPI}}(t)\frac{T_{\mathrm{m}}}{T_{\mathrm{ref}}}\frac{P_{\mathrm{ref}}}{\left({P}_{\mathrm{m}}-{\left[R{Q}_{\mathrm{std},\mathrm{DPI}}(t)\frac{T_{\mathrm{m}}}{T_{\mathrm{ref}}}\frac{P_{\mathrm{ref}}}{P_{\mathrm{m}}}\kern0.10em \right]}^2\right)} $$
(A-8)

Pref equals 101.3 kPa, Tref equals 21.11°C (294.26 K), and R is the device resistance (taken as the reference value measured at sea level). Eq. A - 8 assumes that the effect of ambient pressure on inhaler resistance is negligible (reasonable for moderate altitudes; Titosky et al., J Pharm Sci 2014;103:2116–2124; Ruzycki et al., J Aerosol Med Pulm Drug Deliv 2018;31 (4):221–236). Furthermore, the derivation assumes that the relation between pressure drop and flowrate is quasi-steady, a reasonable assumption given the small volume of the inhaler relative to the inhalation flowrate.

Appendix 2 – Equations Describing the Pharmacokinetic Model

The equations describing the pharmacokinetic model shown schematically in Fig. 2 of the main text are summarized in this Appendix. Note that initial deposited masses in each generation of the tracheobronchial airways and in the alveolar region (Fi, 0 ≤ i ≤ 14, and FALV, respectively) come directly from the regional deposition model discussed in the main text, while the initial dose in the gastrointestinal tract is taken as the dose measured in the Alberta Idealized Throat in vitro. Rate constants describing mucociliary clearance (kmuc,i) and the volume of the airway surface liquid in each generation VASL,i come from the airway surface liquid model discussed in the main text. Values for other rate constants and critical parameters are provided in the main text with references to the literature.

Gastrointestinal tract compartment drug mass, m A :

$$ \frac{d{m}_{\mathrm{A}}}{dt}=-{k}_{\mathrm{a}}{m}_{\mathrm{A}}+{k}_{\mathrm{muc},0}\left({m}_{0,1}+{m}_{0,2}\right) $$
(B-1)

Equation B - 1 is subject to the initial condition mA equal to the dose measured in the Alberta Idealized Throat at time t = 0

Central compartment drug mass, m X :

$$ \frac{d{m}_{\mathrm{X}}}{dt}=-\left({k}_{12}+{k}_{01}\right){m}_{\mathrm{X}}+{F}_{\mathrm{BA}}{k}_{\mathrm{a}}{m}_{\mathrm{A}}+{k}_{21}{m}_{\mathrm{P}}+{k}_{\mathrm{A}\mathrm{LV}}{m}_{\mathrm{A}\mathrm{LV},2}+{k}_{\mathrm{TB}}\sum \limits_{i=0}^{14}{m}_{i,2} $$
(B-2)

Equation B - 2 is subject to the initial condition mX = 0 at time t = 0

Central compartment drug concentration, c X :

$$ {c}_{\mathrm{X}}=\frac{m_{\mathrm{X}}}{V_{\mathrm{C}}} $$
(B-3)

Where the volume of distribution, VC, was calculated via Eq. 3 as discussed in the main text.

Peripheral compartment drug mass, m P :

$$ \frac{d{m}_{\mathrm{P}}}{dt}={k}_{12}{m}_{\mathrm{X}}-{k}_{21}{m}_{\mathrm{P}} $$
(B-4)

Equation B - 4 is subject to the initial condition mP = 0 at time t = 0

ith tracheobronchial airway compartment drug mass, mi (0≤ i <14):

$$ \frac{d{m}_{\mathrm{i},1}}{dt}=-{K}_{\mathrm{diss},\mathrm{TB}}{m}_{\mathrm{i},1}\left({c}_{\mathrm{S}}-{c}_{\mathrm{i}}\right)-{k}_{\mathrm{muc},\mathrm{i}}{m}_{\mathrm{i},1}+{k}_{\mathrm{muc},\mathrm{i}+1}{m}_{\mathrm{i}+1,1} $$
(B-5)
$$ \frac{d{m}_{\mathrm{i},2}}{dt}={K}_{\mathrm{diss},\mathrm{TB}}{m}_{\mathrm{i},1}\left({c}_{\mathrm{S}}-{c}_{\mathrm{i}}\right)-{k}_{\mathrm{muc},\mathrm{i}}{m}_{\mathrm{i},2}+{k}_{\mathrm{muc},\mathrm{i}+1}{m}_{\mathrm{i}+1,2}-{k}_{\mathrm{TB}}{m}_{\mathrm{i},2} $$
(B-6)

ith tracheobronchial airway compartment drug mass, mi (i =14):

$$ \frac{d{m}_{\mathrm{i},1}}{dt}=-{K}_{\mathrm{diss},\mathrm{TB}}{m}_{\mathrm{i},1}\left({c}_{\mathrm{S}}-{c}_{\mathrm{i}}\right)-{k}_{\mathrm{muc},\mathrm{i}}{m}_{\mathrm{i},1} $$
(B-7)
$$ \frac{d{m}_{\mathrm{i},2}}{dt}={K}_{\mathrm{diss},\mathrm{TB}}{m}_{\mathrm{i},1}\left({c}_{\mathrm{S}}-{c}_{\mathrm{i}}\right)-{k}_{\mathrm{muc},\mathrm{i}}{m}_{\mathrm{i},2}-{k}_{\mathrm{TB}}{m}_{\mathrm{i},2} $$
(B-8)

ith tracheobronchial airway compartment drug concentration, ci (0≤ i ≤14):

$$ {c}_{\mathrm{i}}=\frac{m_{\mathrm{i},2}}{V_{\mathrm{ASL},\mathrm{i}}} $$
(B-9)

Alveolar compartment drug mass, m ALV :

$$ \frac{d{m}_{\mathrm{ALV},1}}{dt}=-{k}_{\mathrm{diss},\mathrm{ALV}}{m}_{\mathrm{ALV},1} $$
(B-10)
$$ \frac{d{m}_{\mathrm{ALV},2}}{dt}={k}_{\mathrm{diss},\mathrm{ALV}}{m}_{\mathrm{ALV},1}-{k}_{\mathrm{ALV}}{m}_{\mathrm{ALV},2} $$
(B-11)

Equation B – 5, B – 7, and B – 10 are subject to the initial condition mi,1 = Fi at time t = 0. Eq. B – 6, B – 8, and B – 11 are subject to the initial condition mi,2 = 0 at time t = 0

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ruzycki, C.A., Murphy, B., Nathoo, H. et al. Combined in Vitro-in Silico Approach to Predict Deposition and Pharmacokinetics of Budesonide Dry Powder Inhalers. Pharm Res 37, 209 (2020). https://doi.org/10.1007/s11095-020-02924-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11095-020-02924-7

Key Words

Navigation