Skip to main content
Log in

Detection of hubs in complex networks by the Laplacian matrix

  • Research Article
  • Published:
Journal of the Korean Statistical Society Aims and scope Submit manuscript

Abstract

We propose a definition of hub in complex networks by using the eigenvectors of the Laplacian matrix, and suggest a method of detecting hubs. The proposed definition provides a different concept from the classical measures such as the centrality or degree. Also, a method of determining the number of hubs is suggested using a scree plot. Illustrative examples based on artificial data sets and real data sets are given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Bao, Z. G., Pan, G. M. and Zhou, W. (2011). Tracy-Widom law for the extreme eigenvalues of sample correlation matrices, arXiv: 1110.5208.s.

  • Bien, J., & Tibshirani, R. J. (2011). Sparse estimation of a covariance matrix. Biometrika, 98, 807–820.

    Article  MathSciNet  Google Scholar 

  • Birnbaum, A., Johnstone, I. M., Nadler, B., & Paul, D. (2013). Minimax bounds for sparse PCA with noisy high-dimensional data. The Annals of Statistics, 41, 1055–1084.

    Article  MathSciNet  Google Scholar 

  • Bonacich, P. (1987). Power and centrality: a family of measures power and centrality. The American Journal of Sociology, 92, 1170–1182.

    Article  Google Scholar 

  • Brem, R., & Kruglyak, L. (2005). The landscape of genetic complexity across 5700 gene expression traits in yeast. Proceedings of Natioanl Academy of Sciences, 102, 1572–1577.

    Article  Google Scholar 

  • Butte, A. J., Tamayo, P., Slonim, D., Golub, T. R., & Kohane, I. S. (2000). Discovering functional relationships between RNA expression and chemotherapeutic susceptibility using relevance networks. Proceedings of the National Academy of Sciences, 97, 12182–12186.

    Article  Google Scholar 

  • Cai, T. T., Liu, W., & Luo, X. (2011). A constrained \(l_1\) minimization approach to sparse precision matrix estimation. Journal of the American Statistical Association, 106, 672–684.

    Article  MathSciNet  Google Scholar 

  • Cai, T. T., & Yuan, M. (2012). Adaptive covariance matrix estimation through block thresholding. The Annals of Statistics, 40, 2014–2042.

    MathSciNet  MATH  Google Scholar 

  • Cai, T. T., Liu, W., & Zhou, H. H. (2016). Estimating sparse precision matrix: optimal rates of convergence and adaptive estimation. The Annals of Statistics, 44, 455–488.

    MathSciNet  MATH  Google Scholar 

  • Cao, X., Wang, X., Jin, D., Cao, Y., & He, D. (2013). Identifying overlapping communities as well as hubs and outliers via nonnegative matrix factorization. Nature Scientific Reports, 3, 2993–3002.

    Article  Google Scholar 

  • Chandrasekaran, V., Parrilo, P. A., & Willsky, A. S. (2012). Latent variable graphical model selection via convex optimization. The Annals of Statistics, 40, 1935–1967.

    MathSciNet  MATH  Google Scholar 

  • Chaudhuri, S., Alur, R. and Cerny, P. (2007). Model checking on trees with path equivalences, 13th International Conference on Tools and Algorithms for the Construction and Analysis of Systems.

  • Chun, M., Kim, C., & Chang, I. (2016). Uncovering multiloci-ordering by algebraic property of Laplacian matrix and its Fiedler vector. Bioinformatics, 32, 801–807.

    Article  Google Scholar 

  • Dempster, A. P. (1972). Covariance selection. Biometrics, 28, 157–175.

    Article  MathSciNet  Google Scholar 

  • Edward, D. (2000). Introduction to graphical modelling (2nd ed.). New York: Springer.

    Book  Google Scholar 

  • Fan, J., Liao, Y., & Liu, H. (2016). An overview on the estimation of large covariance and precision matrices. The Econometrics Journal, 19, C1–C32.

    Article  MathSciNet  Google Scholar 

  • Hao, D., & Li, C. (2011). The dichotomy in degree correlation of biological networks. PLoS One, 6, e28322.

    Article  Google Scholar 

  • Hong, Y., & Kim, C. (2018). Recent developments in high dimensional covariance estimation and its related issues, a review. Journal of the Korean Statistical Society, 47(1), 239–247.

    Article  MathSciNet  Google Scholar 

  • Johnstone, I. M. (2001). On the distribution of the largest eigenvalue in principal component analysis. The Annals of Statistics, 29, 295–327.

    Article  MathSciNet  Google Scholar 

  • Johnstone, I. M. (2008). Multivariate analysis and Jacobi ensembles: largest eigenvalue, Tracy–Widom limits and rates of convergence. The Annals of Statistics, 36, 2638–2716.

    Article  MathSciNet  Google Scholar 

  • Katz, L. (1953). A new status index derived from sociometric analysis. Psychometrika, 18, 39–43.

    Article  Google Scholar 

  • Kim, C., Cheon, M., Kang, M., & Chang, I. (2008). A simple and exact Laplacian clustering of complex networking phenomena: application to gene expression profiles. Proceedings of the National Academy of Science, 105, 4083–4087.

    Article  Google Scholar 

  • Marcenko, V. A., & Pastur, L. A. (1967). Distribution of eigenvalues for some sets of random matrices. Mathmatics of the USSR-Sbornik, 1, 457–483.

    Article  Google Scholar 

  • Meinshausen, N., & Buhlmann, P. (2006). High-dimensional graphs and variable selection with the lasso. The Annals of Statistics, 34, 1436–1462.

    MathSciNet  MATH  Google Scholar 

  • Mieghem, P. V. (2010). Graph Spectra for Complex Networks. New York: Cambridge University Press.

    Book  Google Scholar 

  • Newman, M. (2002). Assortative mixing in networks. Physics Review Letters, 89, 208701.

    Article  Google Scholar 

  • Newman, M. (2010). Networks. An introduction. New York: Oxford University Press.

    Book  Google Scholar 

  • Peng, J., Wang, P., Zhou, N., & Zhu, J. (2009). Partial correlation estimation by joint sparse regression models. Journal of the American Statistical Association, 104, 735–746.

    Article  MathSciNet  Google Scholar 

  • Pillai, N. S., & Yin, J. (2012). Edge universality of correlation matrices. The Annals of Statistics, 40, 1737–1763.

    Article  MathSciNet  Google Scholar 

  • Rodrigues, F. A. (2019). Network centrality : an introduction, arXiv: 1901.07901v.

  • Ravikumar, P., Wainwright, M. J., Raskutti, G., & Yu, B. (2011). High-dimensional covariance estimation by minimizing \(l_1 -\) penalized log-determinant divergence. Electronic Journal of Statistics, 5, 935–980.

    Article  MathSciNet  Google Scholar 

  • Rothman, A. J., Levina, E., & Zhu, J. (2010). Sparse multivariate regression with covariance estimation. Journal of Computational and Graphical Statistics, 19, 947–962.

    Article  MathSciNet  Google Scholar 

  • Sachs, K., Perez, O., & Pe’er, D. (2005). Causal protein-signaling networks derived from multiparameter single-cell data. Science, 308, 523–529.

    Article  Google Scholar 

  • Tracy, C. A., & Widom, H. (1996). On orthogonal and symplectic matrix ensembles. Communications in Mathematical Physics, 177, 727–754.

    Article  MathSciNet  Google Scholar 

  • Tracy, C. A., & Widom, H. (2000). The distribution of the largest eigenvalue in the Gaussian ensembles; \(\beta = 1,2,4\). CRM Series in Mathematical Physics, 4, 461–472.

    MathSciNet  Google Scholar 

  • von Luxburg, U. (2007). A tutorial on spectral clustering. Statistics and Computing, 17, 395–416.

    Article  MathSciNet  Google Scholar 

  • Whittaker, J. (1990). Graphical models in applied mathematical multivariate statistics. New York: Wiley.

    MATH  Google Scholar 

  • Wigner, E. P. (1955). Characteristic vectors of bordered matrices with infinite dimensions. The Annals of Mathematics, 62, 548–564.

    Article  MathSciNet  Google Scholar 

  • Yuan, M., & Lin, Y. (2007). Model selection and estimation in the Gaussian graphical model. Biometrika, 94, 19–35.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Choongrak Kim.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work was supported by the National Research Foundation of Korea(NRF) grant funded by the Korea government(MSIT)(No.2019R1A2C1007193 to C. Kim) and the Ministry of Science, Technology and ICT(NRF-2017R1E1A1A03070854 to I.Chang).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hong, Y., Chang, I. & Kim, C. Detection of hubs in complex networks by the Laplacian matrix. J. Korean Stat. Soc. 50, 431–446 (2021). https://doi.org/10.1007/s42952-020-00087-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42952-020-00087-0

Keywords

Navigation