Skip to main content
Log in

Effect of a Transducer Horizontality Default on Lake Fish Stock Assessment

  • Technical Note
  • Published:
Acoustics Australia Aims and scope Submit manuscript

Abstract

Freshwater hydroacoustic surveys are frequently performed with small research boats. Thus, the transducer, usually fixed on a pole on the side of the boat, could be misaligned with the horizontal axis (i.e., the lake surface). Given that fish acoustic responses are strongly directional, the transducer angle could induce attenuation of their backscattering strengths. To test the influence of a small shift of the transducer orientation, we compared hydroacoustics estimates from two sampling nights on the Lake Annecy: the first one being a transducer angle of \(1.5^{\circ }\) with the horizontal and the second one being strictly horizontal. We showed that the effect of such an angle is negligible over the sampling variability on the TS distribution of the fish population and the biomass assessment. We conclude that a small shift in the transducer horizontality (\(\le 1.5^{\circ }\)) will not degrade the quality of the acoustic data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. CEN: Guidance on the estimation of fish abundance with mobile hydroacoustic methods. CSN EN 15910, Comité Européen de Normalisation, Brussels (2014)

  2. Draštík, V., Godlewska, M., Balk, H., Clabburn, P., Kubečka, J., Morrissey, E., Hateley, J., Winfield, I.J., Mrkvička, T., Guillard, J.: Fish hydroacoustic survey standardization: a step forward based on comparisons of methods and systems from vertical surveys of a large deep lake: fish hydroacoustic survey standardization. Limnol. Oceanogr. Methods 15(10), 836–846 (2017)

    Article  Google Scholar 

  3. Mouget, A., Goulon, C., Axenrot, T., Balk, H., Lebourges-Dhaussy, A., Godlewska, M., Guillard, J.: Including 38 kHz in the standardization protocol for hydroacoustic fish surveys in temperate lakes. Remote Sens. Ecol. Conserv. 5(4), 332–345 (2019)

    Article  Google Scholar 

  4. Emmrich, M., Winfield, I.J., Guillard, J., Rustadbakken, A., Vergès, C., Volta, P., Jeppesen, E., Lauridsen, T.L., Brucet, S., Holmgren, K., Argillier, C., Mehner, T.: Strong correspondence between gillnet catch per unit effort and hydroacoustically derived fish biomass in stratified lakes: Comparison of gillnet catches with fish biomass estimates derived from hydroacoustics. Freshw. Biol. 57(12), 2436–2448 (2012)

    Article  Google Scholar 

  5. Godlewska, M., Izydorczyk, K., Kaczkowski, Z., Jóźwik, A., Długoszewski, B., Ye, S., Lian, Y., Guillard, J.: Do fish and blue-green algae blooms coexist in space and time? Fish. Res. 173, 93–100 (2016)

    Article  Google Scholar 

  6. Morrissey-McCaffrey, E., Rocks, K., Kelly, F.L., Kelly-Quinn, M.: Effects of differing ground-truth data, transect design and statistical analysis on the repeatability of hydroacoustic assessments of pollan Coregonus autumnalis pollan. Fish. Manag. Ecol. 25(4), 304–318 (2018)

    Article  Google Scholar 

  7. Frouzova, J., Kubecka, J., Balk, H., Frouz, J.: Target strength of some European fish species and its dependence on fish body parameters. Fish. Res. 75(1–3), 86–96 (2005)

    Article  Google Scholar 

  8. Michael Jech, J.: Interpretation of multi-frequency acoustic data: effects of fish orientation. J. Acoust. Soc. Am. 129(1), 54–63 (2011)

    Article  Google Scholar 

  9. Tušer, M., Kubečka, J., Frouzová, J., Jarolím, O.: Fish orientation along the longitudinal profile of the Římov reservoir during daytime: consequences for horizontal acoustic surveys. Fish. Res. 96(1), 23–29 (2009)

    Article  Google Scholar 

  10. MacLennan, D.N., Fernandes, P.G., Dalen, J.: A consistent approach to definitions and symbols in fisheries acoustics. ICES J. Mar. Sci. 59(2), 365–369 (2002)

    Article  Google Scholar 

  11. Love, R.H.: Dorsal-aspect target strength of an individual fish. J. Acoust. Soc. Am. 49(3B), 816–823 (1971)

    Article  Google Scholar 

  12. Rimet, F., Anneville, O., Barbet, D., Chardon, C., Crépin, L., Domaizon, I., Dorioz, J.-M., Espinat, L., Frossard, V., Guillard, J., Goulon, C., Hamelet, V., Hustache, J.-C., Jacquet, S., Lainé, L., Montuelle, B., Perney, P., Quetin, P., Rasconi, S., Schellenberger, A., Tran-Khac, V., Monet, G.: The Observatory on LAkes (OLA) database: sixty years of environmental data accessible to the public. J. Limnol. 79(2), 164–178 (2020)

    Google Scholar 

  13. Guillard, J., Vergés, C.: The repeatability of fish biomass and size distribution estimates obtained by hydroacoustic surveys using various sampling strategies and statistical analyses. Int. Rev. Hydrobiol. 92(6), 605–617 (2007)

    Article  Google Scholar 

  14. Masson, S., Angeli, N., Guillard, J., Pinel-Alloul, B.: Diel vertical and horizontal distribution of crustacean zooplankton and young of the year fish in a sub-alpine lake: an approach based on high frequency sampling. J. Plankton Res. 23(10), 1041–1060 (2001)

    Article  Google Scholar 

  15. Guillard, J., Perga, M.-E., Colon, M., Angeli, N.: Hydroacoustic assessment of young-of-year perch, Perca fluviatilis, population dynamics in an oligotrophic lake (Lake Annecy, France). Fish. Manag. Ecol. 13(5), 319–327 (2006)

    Article  Google Scholar 

  16. Sotton, B., Anneville, O., Cadel-Six, S., Domaizon, I., Krys, S., Guillard, J.: Spatial match between Planktothrix rubescens and whitefish in a mesotrophic peri-alpine lake: evidence of toxins accumulation. Harmful Algae 10(6), 749–758 (2011)

    Article  Google Scholar 

  17. Godlewska, M., Colon, M., Jóźwik, A., Guillard, J.: How pulse lengths impact fish stock estimations during hydroacoustic measurements at 70 kHz. Aquat. Living Resour. 24(1), 71–78 (2011)

    Article  Google Scholar 

  18. Foote, K.G., Knudsen, H.P., Vestnes. G.: Standard calibration of echosounders and integrators with optimal copper spheres. Fisk Dir. Skr. Ser. Havunders 17, 335–346 (1983)

  19. Demer, D.A., Berger, L., Bernasconi, M., Eckhard, B., Boswell, K., Chu, D., Domokos, R., Dunford, A., Fässler, S., Gauthier, S., Hufnagle, L.T., Jech, J.M., Le Bouffant, N., Lebourges-Dhaussy, A., Lurton, X., Macaulay, G.J., Perrot, Y., Ryan, T.E., Parker-Stetter, S., Stienessen, S., Weber, T., Williamson, N.: Calibration of acoustic instruments. Technical report 326, ICES, Denmark (2015)

  20. Balk, H., Lindem, T.: Sonar4 and Sonar5-Pro post processing systems. Operator manual version 6.01. Technical report, Lindem Data Acquisition, Olso, Norway (2014)

  21. Parker-Stetter, S.L., Rudstam, L.G., Sullivan, P.J., Warner, D.M.: Standard operating procedures for fisheries acoustic surveys in the Great Lakes. Special Publication 09-01, Great Lakes Fisheries Commission (2009)

  22. Frossard, V., Goulon, C., Guillard, J., Hamelet, V., Jacquet, S., Laine, L., Rimet, F., Tran-Khac, V.: Suivi de la qualité des eaux du lac d’Annecy. Rapport 2018. Technical report, SILA (éd.) et INRAE-Thonon, Annecy (2019)

  23. Mehner, T., Busch, S., Helland, I.P., Emmrich, M., Freyhof, J.: Temperature-related nocturnal vertical segregation of coexisting coregonids: nocturnal segregation of coregonids. Ecol. Freshw. Fish 19(3), 408–419 (2010)

    Article  Google Scholar 

  24. Yule, D.L., Evrard, L.M., Cachera, S., Colon, M., Guillard, J.: Comparing two fish sampling standards over time: largely congruent results but with caveats. Freshw. Biol. 58(10), 2074–2088 (2013)

    Article  Google Scholar 

  25. Carlander, K.D.: Handbook of Freshwater Fishery Biology, vol. 1. Iowa State University Press, Ames (1969)

    Google Scholar 

  26. Ona, E.: Herring tilt angles, measured through target tracking. In: Herring: Expectations for a New Millenium. Anchorage, Alaska. Lowell Wakefield Fisheries Symposia Series, pp. 461–487 (2001)

  27. Simmonds, E.J., MacLennan, D.N.: Fisheries Acoustics: Theory and Practice. Number 10 in Fish and Aquatic Resources Series, 2nd edn. Blackwell Science, Oxford (2005)

    Book  Google Scholar 

  28. Doray, M., Berger, L., Le Bouffant, N., Coail, J.Y., Vacherot, J.P., de La Bernardie, X., Moriniére, P., Lys, E., Schwab, R., Petitgas, P.: A method for controlled target strength measurements of pelagic fish, with application to European anchovy (Engraulis encrasicolus). ICES J. Mar. Sci. 73(8), 1987–1997 (2016)

    Article  Google Scholar 

  29. Love, R.H.: Target strength of an individual fish at any aspect. J. Acoust. Soc. Am. 62(6), 1397 (1977)

    Article  Google Scholar 

  30. R Core Team.: R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria (2019)

  31. Frossard, V., Barbier, C., Goulon, C., Guillard, J., Hamelet, V., Jacquet, S., Laine, L., Lasne, E., Rimet, F.: Suivi de la qualité des eaux du lac d’Annecy. Rapport 2016. Technical report, SILA (éd.) et INRAE-Thonon, Annecy (2017)

  32. Blaxter, J.H.S., Batty, R.S.: Swimbladder “behaviour” and target strength. Rapports et Proces-verbaux des Réunions du Conseil International pour l’Exploration de la Mer 189, 233–244 (1990)

    Google Scholar 

  33. Gauthier, S., Horne, J.K.: Acoustic characteristics of forage fish species in the Gulf of Alaska and Bering Sea based on Kirchhoff-approximation models. Can. J. Fish. Aquat. Sci. 61(10), 1839–1850 (2004)

    Article  Google Scholar 

  34. Guintard, C., Salaud, C., Richaudeau, Y., Tavernier, C., Desal, H., Bourcier, R., Chanet, B.: Exploration de l’anatomie de la perche commune Perca fluviatilis (Linnaeus, 1758) [Serraniformes, Percidae]. Cahiers d’Anatomie Comparée 9, 1–20 (2017)

    Google Scholar 

  35. Lilja, J., Marjomäki, T.J., Jurvelius, J., Rossi, T., Heikkola, E.: Simulation and experimental measurement of side-aspect target strength of Atlantic salmon (Salmo salar) at high frequency. Can. J. Fish. Aquat. Sci. 61(11), 2227–2236 (2004)

    Article  Google Scholar 

  36. Nakken, O., Olsen, K.: Target Strength Measurements of Fish. ICES, Bergen (1977)

    Google Scholar 

Download references

Acknowledgements

This work was supported by OFB (Office Français de la Biodiversité, previously named Agence Française pour la Biodiversité) and had support from AnaEE France and SOERE OLA (boat and technical facilities). The hydroacoustic and limnological data are issued from OLA, Observatory of LAkes (http://www6.inra.fr/soere-ola ©SOERE OLA-IS, AnaEE-France, INRAE Thonon-les-Bains, SILA, developed by Eco-Informatics ORE INRAE Team). The authors want to thank Jean-Christophe Hustache and Dr. Helge Balk for their precious help during the survey, as well as Michaël Girard for previous analyses. We want to thank Laurent Berger and the anonymous reviewer for their pertinent comments and remarks about the manuscript. The authors Arthur Blanluet, Jean Guillard and Chloé Goulon are associate members of the Cogitamus Laboratory.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arthur Blanluet.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Blanluet, A., Goulon, C., Lebourges-Dhaussy, A. et al. Effect of a Transducer Horizontality Default on Lake Fish Stock Assessment. Acoust Aust 48, 473–479 (2020). https://doi.org/10.1007/s40857-020-00206-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40857-020-00206-1

Keywords

Navigation