Skip to main content
Log in

Delocalization of Longitudinal Acoustic-Like Excitations in DNA Due to Structural Effects

  • Biophysics
  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

Terahertz-frequency phonon-like modes in DNA have been widely studied both experimentally and theoretically in recent years. However, current theoretical models turn out to fail to reproduce some basic properties of these modes. Using a generalized hydrodynamics approach and the results of inelastic X-ray scattering measurements, we propose a model to describe structural effects due to wavenumber dependence of the static structure factor in the dynamics of longitudinal acoustic-like excitations in DNA. Our analysis qualitatively suggests that on a length scale corresponding to a wavenumber region between the positions of the maximum and the minimum of the dispersion relation for the excitation frequency, structural effects may induce a tendency of delocalization of the dynamics. This proposal is consistent with the recent experimental observations of delocalized terahertz-frequency DNA phonon-like modes that seem to be relevant to biological function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. H. Vos and J.-L. Martin, Biochim. Biophys. Acta 1411, 1 (1999).

    Google Scholar 

  2. M. Grossman, B. Born, M. Heyden, D. Tworowski, G. B. Fields, I. Sagi, and M. Havenith, Nat. Struct. Mol. Biol. 18, 1102 (2011).

    Google Scholar 

  3. M. González-Jiménez, G. Ramakrishnan, T. Har-wood, A. J. Lapthorn, S. M. Kelly, E. M. Ellis, and K. Wynne, Nat. Commun. 7, 11799 (2016).

    ADS  Google Scholar 

  4. M. González-Jiménez, G. Ramakrishnan, and K. Wynne, bioRxiv preprint (2020). https://doi.org/10.1101/2020.03.16.993873

  5. M. B. Hakim, S. M. Lindsay, and J. Powell, Biopolymers 23, 1185 (1984).

    Google Scholar 

  6. S. G. Lushnikov, A. V. Dmitriev, A. I. Fedoseev, G. A. Zakharov, A. V. Zhuravlev, A. V. Medvedeva, B. F. Schegolev, and E. V. Savvateeva-Popova, JETP Lett. 98, 735 (2014).

    ADS  Google Scholar 

  7. P. C. Painter, L. E. Mosher, and C. Rhoads, Biopolymers 20, 243 (1981).

    Google Scholar 

  8. H. Grimm, H. Stiller, C. Majkrzak, A. Rupprecht, and U. Dahlborg, Phys. Rev. Lett. 59, 1780 (1987).

    ADS  Google Scholar 

  9. Y. Liu, D. Berti, A. Faraone, W.-R. Chen, A. Alatas, H. Sinn, E. Alp, A. Said, P. Baglioni, and S.-H. Chen, Phys. Chem. Chem. Phys. 6, 1499 (2004).

    Google Scholar 

  10. Y. Liu, D. Berti, P. Baglioni, S.-H. Chen, A. Alatas, H. Sinn, A. Said, and E. Alp, J. Phys. Chem. Solids 66, 2235 (2005).

    ADS  Google Scholar 

  11. Y. Liu, S. H. Chen, and D. Berti, J. Chem. Phys. 123, 214909 (2005).

    ADS  Google Scholar 

  12. M. Krisch, A. Mermet, H. Grimm, V. T. Forsyth, and A. Rupprecht, Phys. Rev. E 73, 061909 (2006).

    ADS  Google Scholar 

  13. D. L. Woolard, T. R. Globus, B. L. Gelmont, M. Bykhovskaia, A. C. Samuels, D. Cookmeyer, J. L. Hesler, T. W. Crowe, J. O. Jensen, J. L. Jensen, and W. R. Loerop, Phys. Rev. E 65, 051903 (2002).

    ADS  Google Scholar 

  14. A. Kotnala, S. Wheaton, and R. Gordon, Nanoscale 7, 2295 (2015).

    ADS  Google Scholar 

  15. K.-C. Chou, Biochem. J. 221, 27 (1984).

    Google Scholar 

  16. V. L. Golo and E. I. Kats, JETP Lett. 62, 627 (1995).

    ADS  Google Scholar 

  17. S. Cocco and R. Monasson, J. Chem. Phys. 112, 10017 (2000).

    ADS  Google Scholar 

  18. F. Merzel, F. Fontaine-Vive, M. R. Johnson, and G. J. Kearley, Phys. Rev. E 76, 031917 (2007).

    ADS  Google Scholar 

  19. E. S. Shikhovtseva and V. N. Nazarov, JETP Lett. 86, 497 (2007).

    ADS  Google Scholar 

  20. B. S. Alexandrov, V. Gelev, A. R. Bishop, A. Usheva, and K. O. Rasmussen, Phys. Lett. A 374, 1214 (2010).

    ADS  Google Scholar 

  21. V. N. Blinov and V. L. Golo, Phys. Rev. E 83, 021904 (2011).

    ADS  Google Scholar 

  22. E. S. Shikhovtseva and V. N. Nazarov, J. Phys. A: Math. Theor. 46, 225202 (2013).

    ADS  Google Scholar 

  23. A. Di Garbo, Biophys. Chem. 208, 76 (2016).

    Google Scholar 

  24. E. S. Shikhovtseva and V. N. Nazarov, Biophys. Chem. 214–215, 47 (2016).

    Google Scholar 

  25. B. S. Alexandrov, M. L. Phipps, L. B. Alexandrov, L. G. Booshehri, A. Erat, J. Zabolotny, C. H. Mielke, H.-T. Chen, G. Rodriguez, K. O. Rasmussen, J. S. Martinez, A. R. Bishop, and A. Usheva, Sci. Rep. 3, 1 (2013).

    Google Scholar 

  26. P. Salén, M. Basini, S. Bonetti, J. Hebling, M. Krasil-nikov, A. Y. Nikitin, G. Shamuilov, Z. Tibai, V. Zhaunerchyk, and V. Goryashko, Phys. Rep. 836, 1 (2019).

    ADS  Google Scholar 

  27. L. V. Yakushevich, V. N. Balashova, and F. K. Zakiryanov, Biometr. Biostat. Int. J. 7, 218 (2018).

    Google Scholar 

  28. L. V. Yakushevich, V. N. Balashova, and F. K. Zakiryanov, Comput. Res. Model. 10, 545 (2018).

    Google Scholar 

  29. L. V. Yakushevich, Nonlinear Physics of DNA (Wiley-VCH, Weinheim, 2004).

    MATH  Google Scholar 

  30. A. C. Scott, Phys. Scr. 32, 617 (1985).

    ADS  Google Scholar 

  31. V. Muto, A. C. Scott, and P. L. Christiansen, J. Phys. 50, C3–217 (1989).

    Google Scholar 

  32. P. L. Christiansen, P. C. Lomdahl, and V. Muto, Non-linearity 4, 477 (1990).

    ADS  Google Scholar 

  33. V. Muto, P. S. Lomdahl, and P. L. Christiansen, Phys. Rev. A 42, 7452 (1990).

    ADS  Google Scholar 

  34. V. Muto, Acta Appl. Math. 115, 5 (2011).

    MathSciNet  Google Scholar 

  35. A. Cunsolo, Int. Rev. Phys. Chem. 36, 433 (2017).

    Google Scholar 

  36. N. K. Ailawadi, A. Rahman, and R. Zwanzig, Phys. Rev. A 4, 1616 (1971).

    ADS  Google Scholar 

  37. T. M. Weiss, P. J. Chen, H. Sinn, E. E. Alp, S. H. Chen, and H. W. Huang, Biophys. J. 84, 3767 (2003).

    Google Scholar 

  38. V. E. Zakhvataev, J. Chem. Phys. 151, 234902 (2019).

    ADS  Google Scholar 

  39. S. P. Das and G. F. Mazenko, Phys. Rev. A 34, 2265 (1986).

    ADS  Google Scholar 

  40. S. P. Das, Rev. Mod. Phys. 76, 785 (2004).

    ADS  Google Scholar 

  41. A. K. Soper, J. Chem. Phys. 150, 234503 (2019).

    ADS  Google Scholar 

  42. M. F. Hamilton and D. T. Blackstock, J. Acoust. Soc. Am. 83, 74 (1983).

    ADS  Google Scholar 

  43. Y. Zheng, R. G. Maev, and I. Y. Solodov, Can. J. Phys. 77, 927 (1999).

    ADS  Google Scholar 

  44. L. V. Bogdanov and V. E. Zakharov, Phys. D (Amsterdam, Neth.) 165, 137 (2002).

    ADS  Google Scholar 

  45. A. R. Champneys, Phys. D (Amsterdam, Neth.) 112, 158 (1998).

    ADS  Google Scholar 

  46. C. I. Christov, G. A. Maugin, and M. G. Velarde, Phys. Rev. E 54, 3621 (1996).

    ADS  Google Scholar 

  47. M. A. Christou and N. C. Papanicolaou, Appl. Math. Comput. 243, 245 (2014).

    MathSciNet  Google Scholar 

  48. R. W. MacCormack, in Proceedings of the AIAA Hypervelocity Impact Conference in Cincinnati, OH, AIAA Paper 69-354 (AIAA, New York, 1969).

    Google Scholar 

  49. P. T. Vernier, Z. A. Levine, M.-C. Ho, S. Xiao, I. Semenov, and A. G. Pakhomov, J. Membrane Biol. 248, 837 (2015).

    Google Scholar 

Download references

Acknowledgments

We are grateful to the referees for their critical comments and suggestions and to O.S. Volodko for help in numerical simulations.

Funding

This was supported by Russian Foundation for Basic Research, the Government of the Krasnoyarsk Territory, and the Krasnoyarsk Regional Fund of Science (project no. 19-41-240003 “Mathematical Modeling of Collective Atomic Dynamics of Biomacromolecules in Non-Equilibrium Conditions on a Picosecond Time Scale”).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. E. Zakhvataev.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zakhvataev, V.E., Kompaniets, L.A. Delocalization of Longitudinal Acoustic-Like Excitations in DNA Due to Structural Effects. Jetp Lett. 112, 444–451 (2020). https://doi.org/10.1134/S0021364020190030

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364020190030

Navigation