Skip to main content
Log in

Collective Nuclear Vibrations and Initial State Shape Fluctuations in Central Pb + Pb Collisions: Resolving the v2 to v3 Puzzle

  • Fields, Particles, and Nuclei
  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

We have studied, for the first time, the influence of the collective quantum effects in the nuclear wavefunctions on the azimuthal anisotropy coefficients ∈2,3 in the central Pb + Pb collisions at the LHC energies. With the help of the energy weighted sum rule, we demonstrate that the classical treatment with the Woods—Saxon nuclear density overestimates the mean square quadrupole moment of the 208Pb nucleus by a factor of ~2.2. The Monte Carlo Glauber simulation of the central Pb + Pb collisions accounting for the restriction on the quadrupole moment leads to ∈2/∈3 ≈ 0.8 which allows to resolve the v2-to-v3 puzzle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Hirano, P. Huovinen, K. Murase, and Y. Nara, Prog. Part. Nucl. Phys. 70, 108 (2013); arXiv: 1204.5814.

    Article  ADS  Google Scholar 

  2. R. Derradi de Souza, T. Koide, and T. Kodama, Prog. Part. Nucl. Phys. 86, 35 (2016); arXiv: 1506.03863.

    Article  ADS  Google Scholar 

  3. P. Romatschke and U. Romatschke, arXiv:1712.05815.

  4. M. L. Miller, K. Reygers, S. J. Sanders, and P. Steinberg, Ann. Rev. Nucl. Part. Sci. 57, 205 (2007); nuclex/0701025.

    Article  ADS  Google Scholar 

  5. M. Rybczynski, G. Stefanek, W. Broniowski, and P. Bozek, Comput. Phys. Commun. 185, 1759 (2014); arXiv:1310.5475.

    Article  ADS  Google Scholar 

  6. W. Broniowski and W. Florkowski, Phys. Rev. C 65, 024905 (2002); nucl-th/0110020.

    Article  ADS  Google Scholar 

  7. M. Luzum and H. Petersen, J. Phys. G 41, 063102 (2014); arXiv:1312.5503.

    Article  ADS  Google Scholar 

  8. H. Niemi, G. S. Denicol, H. Holopainen, and P. Huovinen, Phys. Rev. C 87, 054901 (2013); arXiv: 1212.1008.

    Article  ADS  Google Scholar 

  9. D. Teaney and L. Yan, Phys. Rev. C 83, 064904 (2011); arXiv: 1010.1876.

    Article  ADS  Google Scholar 

  10. E. Retinskaya, M. Luzum, and J.-Y. Ollitrault, Nucl. Phys. A 926, 152 (2014); arXiv: 1401.3241.

    Article  ADS  Google Scholar 

  11. S. Chatrchyan et al. (CMS Collab.), J. High Energy Phys. 1402, 088 (2014); arXiv:1312.1845.

    Article  ADS  Google Scholar 

  12. S. Acharya et al. (ALICE Collab.), J. High Energy Phys. 1807, 103 (2018); arXiv:1804.02944.

    Article  ADS  Google Scholar 

  13. C. Shen, Z. Qiu, and U. Heinz, Phys. Rev. C 92, 014901 (2015); arXiv: 1502.04636.

    Article  ADS  Google Scholar 

  14. P. Carzon, S. Rao, M. Luzum, M. Sievert, and J. Noronha-Hostler, arXiv: 2007.00780.

  15. J.-B. Rose, J.-F. Paquet, G. S. Denicol, M. Luzum, B. Schenke, S. Jeon, and C. Gale, Nucl. Phys. A 931, 926 (2014); arXiv:1408.0024.

    Article  ADS  Google Scholar 

  16. P. Alba, V. Mantovani Sarti, J. Noronha, J. Noronha-Hostler, P. Parotto, I. Portillo Vazquez, and C. Ratti, Phys. Rev. C 98, 034909 (2018); arXiv:1711.05207.

    Article  ADS  Google Scholar 

  17. A. Bohr and B. R. Mottelson, Nuclear Structure (W. A. Benjamin, New York, 1975).

    MATH  Google Scholar 

  18. W. Greiner and J. A. Maruhn, Nuclear Models (Springer, Berlin, 1996).

    Book  Google Scholar 

  19. S. Kamerdzhiev, J. Speth, and G. Tertychny, Phys. Rep. 393, 1 (2004); nucl-th/0311058.

    Article  ADS  Google Scholar 

  20. X. Roca-Maza and N. Paar, Prog. Part. Nucl. Phys. 101, 96 (2018); arXiv: 1804.06256.

    Article  ADS  Google Scholar 

  21. B. G. Zakharov, JETP Lett. 105, 785 (2017); arXiv: 1703.04271.

    Google Scholar 

  22. B. G. Zakharov, JETP Lett. 108, 723 (2018); arXiv: 1810.08942.

    Article  ADS  Google Scholar 

  23. E. Lipparini and S. Stringari, Phys. Rep. 175, 103 (1989).

    Article  ADS  Google Scholar 

  24. D. H. Youngblood, Y. W. Lui, H. L. Clark, B. John, Y. Tokimoto, and X. Chen, Phys. Rev. C 69, 034315 (2004).

    Article  ADS  Google Scholar 

  25. B. G. Zakharov, JETP Lett. 104, 6 (2016); arXiv: 1605.06012.

    Article  ADS  Google Scholar 

  26. B. G. Zakharov, J. Exp. Theor. Phys. 124, 860 (2017); arXiv: 1611.05825.

    Article  ADS  Google Scholar 

  27. B. G. Zakharov, Eur. Phys. J. C 78, 427 (2018); arXiv: 1804.05405.

    Article  ADS  Google Scholar 

  28. D. Kharzeev and M. Nardi, Phys. Lett. B 507, 121 (2001); nucl-th/0012025.

    Article  ADS  Google Scholar 

  29. B. Müller and K. Rajagopal, Eur. Phys. J. C 43, 15 (2005); arXiv: hep-ph/0502174.

    Article  ADS  Google Scholar 

  30. G. Giacalone, J. Noronha-Hostler, M. Luzum, and J.-Y. Ollitrault, Phys. Rev. C 97, 034904 (2018); arXiv: 1711.08499.

    Article  ADS  Google Scholar 

  31. J. Noronha-Hostler, Li Yan, F. G. Gardim, and J.-Y. Ollitrault, Phys. Rev. C 93, 014909 (2016); arXiv: 1511.03896.

    Article  ADS  Google Scholar 

  32. W. Broniowski and M. Rybczynski, Phys. Rev. C 81, 064909 (2010); arXiv: 1003.1088.

    Article  ADS  Google Scholar 

  33. K. A. Bugaev, A. I. Ivanytskyi, V. V. Sagun, B. E. Grinyuk, D. O. Savchenko, G. M. Zinovjev, E. G. Nikonov, L. V. Bravina, E. E. Zabrodin, D. B. Blaschke, A. V. Taranenko, and L. Turko, Universe 5, 63 (2019); arXiv: 1810.00486.

    Article  Google Scholar 

  34. M. I. Krivoruchenko, D. K. Nadyozhin, T. L. Rasinkova, Yu. A. Simonov, M. A. Trusov, and A. V. Yudin, Phys. At. Nucl. 74, 371 (2011); arXiv:1006.0570.

    Article  Google Scholar 

  35. V. I. Kukulin, Phys. At. Nucl. 74, 1567 (2011).

    Article  Google Scholar 

  36. B. G. Zakharov and B. Z. Kopeliovich, Sov. J. Nucl. Phys. 42, 677 (1985).

    Google Scholar 

  37. N. Paar, D. Vretenar, E. Khan, and G. Colo, Rep. Prog. Phys. 70, 691 (2007); nucl-th/0701081.

    Article  ADS  Google Scholar 

  38. T. Yamagata, S. Kishimoto, K. Yuasa, K. Iwamoto, B. Saeki, M. Tanaka, T. Fukuda, I. Miura, M. Inoue, and H. Ogata, Phys. Rev. C 23, 937 (1981); Phys. Rev. C 23, 2798(E) (1981).

    Article  ADS  Google Scholar 

  39. K. F. Liu and G. E. Brown, Nucl. Phys. A 265, 385 (1976).

    Article  ADS  Google Scholar 

  40. L. Adamczyk, J. K. Adkins, G. Agakishiev, et al. (STAR Collab.), Phys. Rev. Lett. 115, 222301 (2015); arXiv:1505.07812.

    Article  ADS  Google Scholar 

Download references

Acknowledgments

I am grateful to S.P. Kamerdzhiev for helpful communications on the physics of giant resonances and to N.N. Nikolaev for discussing the results.

Funding

This work was supported in part by the Russian Foundation for Basic Research, project no. 18-02-40069mega.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. G. Zakharov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zakharov, B.G. Collective Nuclear Vibrations and Initial State Shape Fluctuations in Central Pb + Pb Collisions: Resolving the v2 to v3 Puzzle. Jetp Lett. 112, 393–398 (2020). https://doi.org/10.1134/S0021364020190029

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364020190029

Navigation