Skip to main content
Log in

Control and Estimation in Linear Time-Varying Systems Based on Ellipsoidal Reachability Sets

  • topical issue
  • Published:
Automation and Remote Control Aims and scope Submit manuscript

Abstract

Linear continuous or discrete time-varying systems in which the sum of a quadratic form of the initial state and the integral or sum of quadratic forms of a disturbance on a finite horizon is bounded above by a given value are considered. It is demonstrated that the reachability set of such a continuous- or discrete-time system is an evolving ellipsoid, and its ellipsoid matrix satisfies a linear matrix differential or difference equation, respectively. The optimal ellipsoidal observer and identification algorithm that yield the best ellipsoidal estimates of the system’s state and unknown parameters are designed. In addition, the optimal controllers ensuring that the system’s state will fall into a target set or that the system’s trajectory will stay within the ellipsoidal tube are designed. A connection between the optimal ellipsoidal observer and the Kalman filter is established. Some illustrative examples for the Mathieu equation, which describes the parametric oscillations of a linear oscillator, are given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. This proof was kindly provided to the authors by A.I. Matasov.

References

  1. Neimark, Ju. I. Matematicheskoe modelirovanie kak nauka i iskusstvo (Mathematical Modeling as Science and Art). (Nizhegor. Gos. Univ., Nizhny Novgorod, 2010).

    Google Scholar 

  2. Neimark, Ju. I. Mathematical Models in Natural Science and Engineering. (Springer-Verlag, Berlin, 2003).

    Book  Google Scholar 

  3. Neimark, Ju. I. Dinamicheskie sistemy i upravlyaemye protsessy (Dynamic Systems and Controlled Processes). (Nauka, Moscow, 1978).

    Google Scholar 

  4. Neimark, Ju. I. Robust Stability and D-partition, Autom. Remote Control 53(no. 7), 957–965 (1992).

    MathSciNet  Google Scholar 

  5. Neimark, Ju. I. Robust Stability under Nonlinear Parameters. Differ. Equat. 28(no. 12), 1829–1831 (1992).

    Google Scholar 

  6. Kogan, M. M. & Neimark, Ju. I. On Optimality of Locally Optimal Solutions to Linear-Quadratic Control and Filtering Problems. Autom. Remote Control 53(no. 4), 561–569 (1992).

    Google Scholar 

  7. Kogan, M. M. & Neimark, Ju. I. Locally Optimal Adaptive Control without Persistent Excitation. Automatica 32(no. 10), 1463–1467 (1996).

    Article  MathSciNet  Google Scholar 

  8. Bulgakov, B. V. On Accumulation of Disturbances in Linear Oscillating Systems with Constant Parameters. Dokl. Akad. Nauk SSSR 51(no. 5), 339–342 (1946).

    Google Scholar 

  9. Schweppe, F. C. Recursive State Estimation: Unknown but Bounded Errors and System Inputs. IEEE Trans. Autom. Control 13(no. 1), 22–28 (1968).

    Article  Google Scholar 

  10. Bertsekas, D. P. & Rhodes, I. P. On the Minimax Reachability of Target Sets and Target Tubes. Automatica 7, 233–247 (1971).

    Article  MathSciNet  Google Scholar 

  11. Kurzhanski, A. B. Upravlenie i nablyudenie v usloviyakh neopredelennosti (Control and Observation under Conditions of Uncertainty). (Nauka, Moscow, 1977).

    Google Scholar 

  12. Chernousko, F.L.Otsenivanie fazovogo sostoyaniya dinamicheskikh sistem, Moscow: Nauka, 1988. Translated under the title State Estimation for Dynamic Systems, Boca Raton: CRC Press, 1993.

  13. Kurzhanski, A. B. & Valyi, I. Ellipsoidal Calculus for Estimation and Control. (Birkhäuser, Boston, 1997).

    Book  Google Scholar 

  14. Kurzhanskiy, A. A. & Varaiya, P. Reach Set Computation and Control Synthesis for Discrete-Time Dynamical Systems with Disturbances. Automatica 47, 1414–1426 (2011).

    Article  MathSciNet  Google Scholar 

  15. Kuntsevich, V. M. & Volosov, V. V. Ellipsoidal and Interval Estimation of State Vectors for Families of Linear and Nonlinear Discrete-Time Dynamic Systems. Cybernet. Syst. Anal. 51(no. 1), 64–72 (2015).

    Article  Google Scholar 

  16. Filippova, T. F. Ellipsoidal Estimates of Reachable Sets for Control Systems with Nonlinear Terms. IFAC PapersOnLine 50(no. 1), 15355–15360 (2017).

    Article  Google Scholar 

  17. Boyd, S., ElGhaoui, L., Feron, E. & Balakrishnan, V. Linear Matrix Inequalities in Systems and Control Theory. (SIAM, Philadelphia, 1994).

    Book  Google Scholar 

  18. Chernousko, F. L. & Ovseevich, A. I. Properties of the Optimal Ellipsoids Approximating the Reachable Sets of Uncertain Systems. J. Optim. Theory Appl. 120(no. 2), 223–246 (2004).

    Article  MathSciNet  Google Scholar 

  19. Wang, Z., Shen, X. & Zhu, Y. On Equivalence of Major Relaxation Methods for Minimum Ellipsoid Covering Intersection of Ellipsoids. Automatica 103, 337–345 (2019).

    Article  MathSciNet  Google Scholar 

  20. Balandin, D. V., Biryukov, R. S. & Kogan, M. M. Optimal Control of Maximum Output Deviations of a Linear Time-Varying System on a Finite Horizon. Autom. Remote Control 80(no. 10), 1783–1802 (2019).

    Article  MathSciNet  Google Scholar 

  21. Balandin, D. V., Biryukov, R. S. & Kogan, M. M. Minimax Control of Deviations for the Outputs of a Linear Discrete Time-Varying System. Autom. Remote Control 80(no. 12), 345–359 (2019).

    Article  Google Scholar 

  22. Balandin, D. V. & Kogan, M. M. Multi-Objective Generalized H2 Control. Automatica 99(no. 1), 317–322 (2019).

    Article  Google Scholar 

  23. Balandin, D. V., Biryukov, R. S. & Kogan, M. M. Finite-Horizon Multi-Objective Generalized H2 Control with Transients. Automatica 106(no. 8), 27–34 (2019).

    Article  Google Scholar 

  24. Wilson, D. A. Convolution and Hankel Operator Norms for Linear Systems. IEEE Trans. Autom. Control 34, 94–97 (1989).

    Article  MathSciNet  Google Scholar 

  25. Balandin, D. V., Biryukov, R. S. & Kogan, M. M. Ellipsoidal Reachability Sets of Linear Time-Varying Systems in Estimation and Control Problems. Differ. Equat. 55(no. 11), 1440–1453 (2019).

    Article  MathSciNet  Google Scholar 

  26. Boyd, S. & Vandenberghe, L. Convex Optimization. (Cambridge Univ. Press, Cambridge, 2004).

    Book  Google Scholar 

  27. Balakrishnan, A.V.Applied Functional Analysis, New York: Springer-Verlag, 1976. Translated under the title Prikladnoi funktsional’nyi analiz, Moscow: Nauka, 1980.

  28. Kwakernaak, H. and Sivan, R.Linear Optimal Control Systems, New York: Wiley-Interscience, 1972. Translated under the title Lineinye optimal’nye sistemy upravleniya, Moscow: Mir, 1977.

  29. Albert, A.Regression and the Moore–Penrose Pseudo-Inverse, New York: Academic, 1972. Translated under the title Regressiya, psevdoinversiya i rekurrentnoe otsenivanie, Moscow: Nauka, 1977.

  30. Kailath, T., Sayed, A. N. & Hassibi, B. Linear Estimation. (Prentice Hall, Upper Saddle River, 2000).

    MATH  Google Scholar 

  31. Nagpal, K. M. & Khargonekar, P. P. Filtering and Smoothing in an H Setting. IEEE Trans. Autom. Control 36(no. 2), 152–166 (1991).

    Article  MathSciNet  Google Scholar 

  32. Horn, R.A., and Johnson, C.R.Matrix Analysis, Cambridge: Cambridge Univ. Press, 1985. Translated under the title Matrichnyi analiz, Moscow: Mir, 1989.

Download references

Acknowledgements

The authors are grateful to A.I. Matasov for his participation in discussions of the results and constructive ideas on the proof of Theorem 2.1.

Author information

Authors and Affiliations

Authors

Appendix

Appendix

Proof of Lemma 2.1. Using the polar factorization [32, p. 490], write the matrix S as \(S={(S{S}^{{\rm{T}}})}^{1/2}U\), where UUT = I. Then \(x=Sg={(S{S}^{{\rm{T}}})}^{1/2}Ug={(S{S}^{{\rm{T}}})}^{1/2}w\), where w = Ug. Since wTw ⩽ 1 and for each such w there exists g = UTw, gTg = wTw ⩽ 1, the proof of Lemma 2.1 is complete.

Proof of Lemma 4.1. Write the equivalent conditions

$$u\in {\mathcal{E}}({Q}_{u})\quad \forall \ x\in {\mathcal{E}}(P)\iff \max {x}^{{\rm{T}}}{\Theta }^{{\rm{T}}}{Q}_{u}^{-1}\Theta x\leqslant 1,\quad x={P}^{1/2}w\quad \forall \ w:\ {w}^{{\rm{T}}}w\leqslant 1.$$

Introducing the Lagrange function

$$L={w}^{{\rm{T}}}{P}^{1/2}{\Theta }^{{\rm{T}}}{Q}_{u}^{-1}\Theta {P}^{1/2}w+\mu \left(1-{w}^{{\rm{T}}}w\right),$$

arrive at the condition

$$\mu ={\lambda }_{\max }\left({P}^{1/2}{\Theta }^{{\rm{T}}}{Q}_{u}^{-1}\Theta {P}^{1/2}\right)={\lambda }_{\max }\left({Q}_{u}^{-1/2}\Theta P{\Theta }^{{\rm{T}}}{Q}_{u}^{-1/2}\right)\leqslant 1,$$

which is equivalent to the inequality ΘPΘT ⩽ Qu. In accordance with the pseudo inverse characterization, P = PP+P; as a result, the inequality above can be written as ΘPP+PΘT ⩽ Qu. Then Schur’s complement lemma for singular matrices [29, p. 190] finally gives (4.2). The proof of Lemma 4.1 is complete.

Proof of Theorem 4.2. The closed loop system is described by the equation

$$x(t+1)={A}_{c}(t)x(t)+B(t)v(t),\quad {A}_{c}(t)=A(t)+{B}_{u}(t)\Theta (t).$$

The reachability sets of this system are the ellipsoids \({\mathcal{E}}({P}_{c}(t))\) with the matrices Pc(t) defined by Theorem 2.1. Introduce the matrices Y(t)YT(t) > 0, t = t0, ⋯ , tf, satisfying the inequalities

$$Y(t+1)\geqslant {A}_{c}(t)Y(t){A}_{c}^{{\rm{T}}}(t)+B(t)G(t){B}^{{\rm{T}}}(t),\quad Y({t}_{0})\geqslant R.$$
(A.1)

Using the notation Θ(t)Y(t) = Z(t) and Schur’s complement lemma, transform this inequality into the first inequality of (4.5). From (A.1) it follows that the relations

$$Y(t+1)-{P}_{c}(t+1)={A}_{c}(t)[Y(t)-{P}_{c}(t)]{A}_{c}^{{\rm{T}}}(t)+M(t),\quad Y({t}_{0})-{P}_{c}({t}_{0})\geqslant 0$$

hold for some matrices M(t) = MT(t) ⩾ 0. Then

$$Y(t)-{P}_{c}(t)=\Phi (t,{t}_{0})[Y({t}_{0})-{P}_{c}({t}_{0})]{\Phi }^{{\rm{T}}}(t,{t}_{0})+\mathop{\sum }\limits_{i={t}_{0}}^{t-1}\Phi (i,{t}_{0})M(i){\Phi }^{{\rm{T}}}(i,{t}_{0})\geqslant 0,$$

where Φ(tt0) is the transition matrix of the closed loop system. Hence, Pc(t) ⩽ Y(t) and \({\mathcal{E}}({P}_{c}(t))\subseteq {\mathcal{E}}(Y(t))\), i.e., the state of the closed loop system belongs to the interior of the ellipsoid \({\mathcal{E}}(Y(t))\), and consequently the target output belongs to the interior of the ellipsoid \({{\mathcal{E}}}_{z}({Q}_{z}(t))\), where Qz(t) = [C(t) + D(t)Θ(t)]Y(t)[C(t)+D(t)Θ(t)]T. In this case, the inequality Qz(t) ⩽ Q(t), which turns into the third and fourth inequalities of (4.5) with the notation Z(t) = Θ(t)Y(t) due to Schur’s complement lemma, will guarantee the corresponding goal of control. The second inequality of (4.5) (see Lemma 4.1) means that \(u(t)\in {\mathcal{E}}({Q}_{u}(t))\). Thus, if inequalities (4.5) hold, the controller guarantees the corresponding goal of control. The proof of Theorem 4.2 is complete.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Balandin, D., Kogan, M. Control and Estimation in Linear Time-Varying Systems Based on Ellipsoidal Reachability Sets. Autom Remote Control 81, 1367–1384 (2020). https://doi.org/10.1134/S0005117920080019

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0005117920080019

Keywords

Navigation