Skip to main content
Log in

Phase Control for the Dynamics of Connected Rotators

  • topical issue
  • Published:
Automation and Remote Control Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

We study the dynamics of rotational motions in a system of two asymmetrically coupled pendulum-type systems, investigating the mechanisms of losing stability for in-phase rotational motion. We analyze the scenario where chaotic dynamics appears depending on the values of the control parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Pikovsky, A., Rosenblum, M. & Kurths, J. Synchronization. A Universal Concept in Nonlinear Sciences. (Cambridge Univ. Press, Cambridge, 2001).

    Book  Google Scholar 

  2. Osipov, G. V., Kurths, J. & Zhou, Ch Synchronization in Oscillatory Networks. (Springer-Verlag, Berlin, 2007).

    Book  Google Scholar 

  3. Afraimovich, V. S., Nekorkin, V. I., Osipov, G. V. & Shalfeev, V. D. Stability, Structures and Chaos in Nonlinear Synchronization Networks. (World Scientific, Singapore, 1994).

    MATH  Google Scholar 

  4. Shalfeev, V.D. and Matrosov, V.V., Nelineinaya dinamika sistem fazovoi sinkhronizatsii (Nonlinear Dynamics of Phase Synchronization Systems), Nizhny Novgorod: Nizhegorod. Univ., 2013.

  5. Neimark, Yu.I., Matematicheskoe modelirovanie kak nauka i iskusstvo. Uchebnik (Mathematical Modeling as an Art and a Science. Textbook), Nizhny Novgorod: Nizhegorod. Univ., 2010, 2nd ed.

  6. Kecik, K. & Warminski, J., Dynamics of an Autoparametric Pendulum-Like System with a Nonlinear Semiactive Suspension. Math. Probl. Eng. 2011(no. 451047), 1–15 (2011).

    Article  Google Scholar 

  7. Yakushevich, L. V., Nonlinear Physics of DNA. (Wiley-VCH, Weinheim, 2004).

    Book  Google Scholar 

  8. Homma, S. & Takeno, S., A Coupled Base-Rotator Model for Structure and Dynamics of DNA: Local Fluctuations in Helical Twist Angles and Topological Solitons. Progr. Theoret. Phys. 72(no. 4), 679–693 (1984).

    Article  MathSciNet  Google Scholar 

  9. Takeno, S. & Homma, S., Kinks and Breathers Associated with Collective Sugar Puckering in DNA. Progr. Theoret. Phys 77(no. 3), 548–562 (1987).

    Article  MathSciNet  Google Scholar 

  10. Barone, A. & Paterno, G., Physics and Applications of the Josephson Effect. (Wiley, New York, 1982).

    Book  Google Scholar 

  11. Ryu, S., Yu, W. & Stroud, D., Dynamics of an Underdamped Josephson-Junction Ladder. Phys. Rev. E 53(no. 3), 2190–2195 (1996).

    Article  Google Scholar 

  12. Qian, M. & Wang, J.-Z., Transitions in Two Sinusoidally Coupled Josephson Junction Rotators. Ann. Phys. 323(no. 8), 1956–1962 (2008).

    Article  Google Scholar 

  13. Zheng, Z., Hu, B. & Hu, G., Spatiotemporal Dynamics of Discrete Sine-Gordon Lattices with Sinusoidal Couplings. Phys. Rev. 57(no. 1), 1139–1144 (1998).

    Google Scholar 

  14. Lindsey, W., Synchronization Systems in Communication and Control, Englewood Cliffs: Prentice Hall, 1972. Translated under the title Sistemy sinkhronizatsii v svyazi i upravlenii, Bakaev, Yu.N. and Kapranov, M.V., Eds., Moscow: Sovetskoe Radio, 1978.

  15. Sistemy fazovoi sinkhronizatsii (Phase Synchronization Systems), Shakhgil’dyan, V.V. and Belyustina, L.N., Eds., Moscow: Radio i Svyaz’, 1982.

  16. Smirnov, L. A., Kryukov, A. K., Osipov, G. V. & Kurths, J., Bistability of Rotational Modes in a System of Coupled Pendulums. Regul. Chaotic Dyn. 21(no. 7-8), 849–861 (2016).

    Article  MathSciNet  Google Scholar 

  17. Khrisanfova, S. O., Kadina, E. Yu, Gubina, E. V., Kogan, L. V. & Osipov, G. V., Dynamics of a System of Two Nonlinearly Coupled Pendulums. Prikl. Nelin. Dinamika no 3, 4–20 (2016).

    Google Scholar 

  18. Kemeth, F. P., Haugland, S. W. & Krischer, K., Cluster Singularity: The Unfolding of Clustering Behavior in Globally Coupled Stuart-Landau Oscillators. Chaos 29(no. 2), 023107 (2019).

    Article  MathSciNet  Google Scholar 

  19. Bolotov, M. I., Munyaev, V. O. & Kryukov, A. K., et al. Variety of Rotation Modes in a Small Chain of Coupled Pendulums. Chaos 29(no. 3), 033109 (2019).

    Article  MathSciNet  Google Scholar 

  20. Neimark, Yu. I., Metod tochechnykh otobrazhenii v teorii nelineinykh kolebanii (Method of Point Mappings in Nonlinear Oscillation Theory). (Nauka, Moscow, 1972).

    Google Scholar 

  21. Neimark, Yu. I., & Landa, P. S. Stokhasticheskie i khaoticheskie kolebaniya (Stochastic and Chaotic Oscillations). (Nauka, Moscow, 1987).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khorkin, D., Bolotov, M., Smirnov, L. et al. Phase Control for the Dynamics of Connected Rotators. Autom Remote Control 81, 1499–1506 (2020). https://doi.org/10.1134/S0005117920080111

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0005117920080111

Keywords

Navigation