Skip to main content
Log in

Homogenization of linear Boltzmann equations in the context of algebras with mean value

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

The paper deals with the homogenization of linear Boltzmann equations by the means of the sigma-convergence method. Replacing the classical periodicity hypothesis on the coefficients of the collision operator by an abstract assumption covering a great variety of physical behaviours, we prove that the density of the particles converges to the solution of a drift-diffusion equation. We then illustrate this abstract setting by working out a few concrete homogenization problems such as the periodic one, the almost periodic one and others. To achieve our goal, we use the Krein–Rutman theorem for locally convex spaces together with the Fredholm alternative to solve the so-called corrector problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bardos, C., Hutridurga, H.: Simultaneous diffusion and homogenization asymptotic for the linear Boltzmann equation. Asympt. Anal. 100, 111–130 (2016)

    MathSciNet  MATH  Google Scholar 

  2. Bardos, C., Bernard, E., Golse, F., Sentis, R.: The diffusion approximation for the linear Boltzmann equation with vanishing absorption, Prepublication of ljll.math.upmc.fr (2012)

  3. Bardos, C., Bernard, E., Golse, F., Sentis, R.: The diffusion approximation for the linear Boltzmann equation with vanishing scattering coefficient. Commun. Math. Sci. 13, 641–671 (2015)

    Article  MathSciNet  Google Scholar 

  4. Bardos, C., Santos, R., Sentis, R.: Diffusion approximation and computation of the critical size. Trans. Am. Math. Soc. 284, 617–649 (1984)

    Article  MathSciNet  Google Scholar 

  5. Ben Abdallah, N., Tayeb, M.L.: Diffusion approximation and homogenization of the semiconductor Boltzmann equation. Multiscale Model. Simul. 4, 896–914 (2005)

    Article  MathSciNet  Google Scholar 

  6. Bernard, E., Caglioti, E., Golse, F.: Homogenization of the linear Boltzmann equation in a domain with a periodic distribution of holes. SIAM J. Math. Anal. 42, 2082–2113 (2010)

    Article  MathSciNet  Google Scholar 

  7. Besicovitch, A.S.: Almost Periodic Functions. Dover Publications, Cambridge (1954)

    Google Scholar 

  8. Bonsall, F.F.: Linear operators in complete positive cones. Proc. Lond. Math. Soc. 8, 53–75 (1958)

    Article  MathSciNet  Google Scholar 

  9. Bohr, H.: Almost Periodic Functions. Chelsea, New York (1947)

    MATH  Google Scholar 

  10. Brezis, H.: Analyse fonctionnelle: Théorie et applications. Masson, Paris (1983)

    MATH  Google Scholar 

  11. Casado Diaz, J., Gayte, I.: The two-scale convergence method applied to generalized Besicovitch spaces. Proc. R. Soc. Lond. A 458, 2925–2946 (2002)

    Article  MathSciNet  Google Scholar 

  12. Dautray, R., Lions, J.-L.: Analyse mathématique et calcul numérique pour les sciences et les techniques, vol. 3. Masson, Paris (1985)

    MATH  Google Scholar 

  13. Diperna, R.J., Lions, P.-L.: Global weak solutions of kinetic equations. Rend. Sem. Mat. Univ. Politecn. Torino 46, 260–288 (1988)

    MathSciNet  MATH  Google Scholar 

  14. Goudon, T., Mellet, A.: Homogenization and diffusion asymptotics of the linear Boltzmann equation. ESAIM COCV 9, 371–398 (2003)

    Article  MathSciNet  Google Scholar 

  15. Jacobs, K.: Measure and Integral. Academic Press, Cambridge (1978)

    MATH  Google Scholar 

  16. Jikov, V.V., Kozlov, S.M., Oleinik, O.A.: Homogenization of Differential Operators and Integral Functionals. Springer, Berlin (1994)

    Book  Google Scholar 

  17. Kenne B, R., Nguetseng, G., Woukeng, J.L.: Deterministic homogenization of Vlasov equations. Math. Methods Appl. Sci. 43, 1359–1379 (2020)

    Article  MathSciNet  Google Scholar 

  18. Krein, M.G., Rutman, M.A.: Linear operators leaving invariant a cone in a Banach space. (Russian) Uspehi Matem. Nauk (N. S.) 3, (1948). no. 1(23), 3–95. English translation: American Math. Soc. Translation 26

  19. Ladyzenskaja, O.A., Solonnikov, V.A., Uralceva, N.N., Smith, S.: Linear and quasilinear equations of parabolic type. LW Singer Co., AMS (1968)

  20. Lorentz, H.A.: Le mouvement des électrons dans les métaux. Arch. Neerl. 10, 336–371 (1905)

    MATH  Google Scholar 

  21. Masmoudi, N., Tayeb, M.L.: Diffusion and homogenization approximation for semiconductor Boltzmann-Poisson system. J. Hyperbolic Differ. Equ. 5, 65–84 (2008)

    Article  MathSciNet  Google Scholar 

  22. Mihalas, B.W., Mihalas, D.: Foundations of Radiation Hydrodynamics. Oxford University Press, Oxford (1984)

    MATH  Google Scholar 

  23. Nguetseng, G.: Homogenization structures and applications I. Z. Anal. Anwen. 22, 73–107 (2003)

    Article  MathSciNet  Google Scholar 

  24. Nguetseng, G., Sango, M., Woukeng, J.L.: Reiterated ergodic algebras and applications. Commun. Math. Phys. 300, 835–876 (2010)

    Article  MathSciNet  Google Scholar 

  25. Pomraning, G.: The Equations of Radiation Hydrodynamics. Pergamon Press, Oxford (1973)

    Google Scholar 

  26. Reed, M., Simon, B.: Methods of Modern Mathematical Physics: Functionnal Analysis, vol. I. Academic Press, New York (1980)

    Google Scholar 

  27. Sango, M., Svanstedt, N., Woukeng, J.L.: Generalized Besicovitch spaces and applications to deterministic homogenization. Nonlin. Anal. TMA 74, 351–379 (2011)

    Article  MathSciNet  Google Scholar 

  28. Schaefer, H.: Halbgeordnete lokalkonvexe Vektorraüme. lI. Math. Ann. 138, 259–286 (1959)

    Article  MathSciNet  Google Scholar 

  29. Sinai, Ya G. (ed.): Dynamical Systems, III. Springer, New York (1980)

    Google Scholar 

  30. Weinberg, A., Wigner, E.: The Physical Theory of Neutron Chain Reactors. The Universityof Chicago Press, Chicago (1958)

    Google Scholar 

  31. Woukeng, J.L.: Homogenization in algebras with mean value and applications. Banach J. Math. 9, 142–182 (2015)

    Article  MathSciNet  Google Scholar 

  32. Woukeng, J.L.: Introverted algebras with mean value and applications. Nonlinear Anal. TMA 99, 190–215 (2014)

    Article  MathSciNet  Google Scholar 

  33. Woukeng, J.L.: Homogenization of nonlinear degenerate non-monotone elliptic operators in domains perforated with tiny holes. Acta Appl. Math. 112, 35–68 (2010)

    Article  MathSciNet  Google Scholar 

  34. Zhikov, V.V., Krivenko, E.V.: Homogenization of singularly perturbed elliptic operators, Matem. Zametki, 33 (1983), 571–582 (english transl.: Math. Notes, 33 (1983), 294–300)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. L. Woukeng.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fouegap, P., Kenne Bogning, R., Nguetseng, G. et al. Homogenization of linear Boltzmann equations in the context of algebras with mean value. Z. Angew. Math. Phys. 71, 173 (2020). https://doi.org/10.1007/s00033-020-01391-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00033-020-01391-9

Keywords

Mathematics Subject Classification

Navigation