Skip to main content

Advertisement

Log in

Finding new addictive QTL for yield traits based on a high-density genetic map in hybrid rice

  • Original paper
  • Published:
Plant Growth Regulation Aims and scope Submit manuscript

Abstract

Rice is one of the most important food crops in the world. To discover the genetic basis of yield components in super hybrid rice Nei2You No.6, 386 recombinant inbred sister lines (RISLs) were obtained for mapping quantitative trait loci (QTL) responsible for grain yield per plant, number of panicles per plant, grain number per panicle and 1000-grain weight. Using whole genome re-sequencing, a high-density linkage map consisting of 3203 Bin markers was constructed with total genetic coverage of 1951.1 cM and average density of 0.61 cM. A total of 43 yield-related QTL were mapped to all 12 chromosomes, and each explained 2.40–10.17% phenotypic variance, indicating that the medium and minor effect QTL are genetic basis for high yield of Nei2You No.6. With positive effect, 28 out of the 43 QTL are inherited from the maintainer line (Nei2B). Nine loci, qGYP-6b, qGNP-6c, qNP-7, qTGW-1a, qTGW-5, qTGW-7, qTGW-10b, qTGW-10c and qTGW-12 showed stable effects across multiple environments. Five of these nine QTL were co-located with previously reported QTL, and four novel locus, qNP-7, qGNP-6c, qTGW-7 and qTGW-12, were firstly identified in the present study. Subsequently, qNP-7, qTGW-7 and qTGW-12 were validated using corresponding paired sister lines which differed only in the target genome region. The recombinant inbred sister lines is an effective tool for mapping and confirming QTL of yield-associated traits. Newly detected QTL provide new resource for investigating genetics of yield components and will accelerate molecular breeding in rice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

FY:

Fuyang

LS:

Lingshui

RISL:

Recombinant inbred sister line

GNP:

Grain number per panicle

GYP:

Grain yield per plant

NP:

The number of panicles

QTL:

Quantitative trait loci

SNP:

Single nucleotide polymorphism

TGW:

Thousand grain weight

References

  • Ashikari M, Sakakibara H, Lin S, Yamamoto T, Takashi T, Nishimura A, Angeles ER, Qian Q, Kitano H, Matsuoka M (2005) Cytokinin oxidase regulates rice grain production. Science 309:741–745

    Article  CAS  PubMed  Google Scholar 

  • Chen L, Zhong Z, Wu W, Liu L, Lu G, Jin M, Tan J, Sheng P, Wang D, Wang J, Cheng Z, Wang J, Zhang X, Guo X, Wu F, Lin Q, Zhu S, Jiang L, Zhai H, Wu C, Wan J (2015) Fine mapping of DTH3b, a minor heading date QTL potentially functioning upstream of Hd3a and RFT1 under long-day conditions in rice. Mol Breed 35:206

    Article  Google Scholar 

  • Dong Q, Zhang Z-H, Wang L-L, Zhu Y-J, Fan Y, Mou T-M, Ma L-Y, Zhuang J-Y (2018) Dissection and fine-mapping of two QTL for grain size linked in a 460-kb region on chromosome 1 of rice. Rice 11:44

    Article  PubMed  PubMed Central  Google Scholar 

  • Doyle JJ, Doyle JL (1986) A rapid DNA isolation procedure from small quantities of fresh leaf tissues. Phytochem Bull 19:11–15

    Google Scholar 

  • Fan C, Xing Y, Mao H, Lu T, Han B, Xu C, Li X, Zhang Q (2006) GS3, a major QTL for grain length and weight and minor QTL for grain width and thickness in rice, encodes a putative transmembrane protein. Theor Appl Genet 112:1164–1171

    Article  CAS  PubMed  Google Scholar 

  • Gao YM, Zhu J, Song YS, He CX, Shi CH, Xing YZ (2004) Analysis of digenic epistatic effects and QE interaction effects QTL controlling grain weight in rice. J Zhejiang Univ Sci 5:371–377

    Article  CAS  PubMed  Google Scholar 

  • Han Z, Hu G, Liu H, Liang F, Yang L, Zhao H, Zhang Q, Li Z, Zhang Q, Xing Y (2020) Bin-based genome-wide association analyses improve power and resolution in QTL mapping and identify favorable alleles from multiple parents in a four-way MAGIC rice population. Theor Appl Genet 133:59–71

    Article  PubMed  Google Scholar 

  • Herzig P, Backhaus A, Seiffert U, Wirén N, Pillen K, Maurer A (2019) Genetic dissection of grain elements predicted by hyperspectral imaging associated with yield-related traits in a wild barley NAM population. Plant Sci 285:151–164

    Article  CAS  PubMed  Google Scholar 

  • Hittalmani S, Huang N, Courtois B, Venuprasad R, Shashidhar H, Zhuang J-Y, Zheng KL, Liu GF, Wang GC, Sidhu J, Srivantaneeyakul S, Singh V, Bagali P, Prasanna H, McLaren G, Khush G (2003) Identification of QTL for growth- and grain yield-related traits in rice across nine locations of Asia. Theor Appl Genet 107:679–690

    Article  PubMed  Google Scholar 

  • Hua JP, Xing YZ, Xu CJ, Sun X, Yu S, Zhang QF (2003) Genetic dissection of an elite rice hybrid reveal that heterozygotes are not always advantageous for performance. Genetics 162:1885–1895

    Google Scholar 

  • Huang X, Feng Q, Qian Q, Zhao Q, Wang L, Wang A, Guan J, Fan D, Weng Q, Huang T, Dong G, Sang T, Han B (2009a) High-throughput genotyping by whole-genome resequencing. Genome Res 19:1068–1076

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang X, Qian Q, Liu Z, Sun H, He S, Luo D, Xia G, Chu C, Li J, Fu X (2009b) Natural variation at the DEP1 locus enhances grain yield in rice. Nat Genet 41:494–497

    Article  CAS  PubMed  Google Scholar 

  • Jiang M, Yamamoto E, Yamamoto T, Matsubara K, Kato H, Adachi S, Nomura T, Kamahora E, Ma J, Ookawa T (2019) Mapping of QTLs associated with lodging resistance in rice (Oryza sativa L.) using the recombinant inbred lines derived from two high yielding cultivars, Tachisugata and Hokuriku 193. Plant Growth Regul 87:267–276

    Article  CAS  Google Scholar 

  • Jiao Y, Wang Y, Xue D, Wang J, Yan M, Liu G, Dong G, Zeng D, Lu Z, Zhu X (2010) Regulation of OsSPL14 by OsmiR156 defines ideal plant architecture in rice. Nat Genet 42:541–544

    Article  CAS  PubMed  Google Scholar 

  • Li H, Durbin R (2009) Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25:1754–1760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li Z, Pinson S, Park W, Paterson AH, Stansel J (1997) Epistasis for three grain yield components in rice (Oryza sativa L.). Genetics 145:453–465

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li X, Qian Q, Fu Z, Wang Y, Xiong G, Zeng D, Wang X, Liu X, Teng S, Hiroshi F, Yuan M, Luo D, Han B, Li J (2003) Control of tillering in rice. Nature 422:618–621

    Article  CAS  PubMed  Google Scholar 

  • Li X, Wu L, Wang J, Sun J, Xia X, Geng X, Wang X, Xu Z, Xu Q (2018) Genome sequencing of rice subspecies and genetic analysis of recombinant lines reveals regional yield- and quality-associated loci. BMC Biol 16:102

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lu Z, Yu H, Xiong G, Wang J, Jiao Y, Liu G, Jing Y, Meng X, Hu X, Qian Q, Fu X, Wang Y, Li J (2013) Genome-wide binding analysis of the transcription activator ideal plant architecture1 reveals a complex network regulating rice plant architecture. Plant Cell 25:3743–3759

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mackay TFC, Stone EA, Ayroles JF (2009) The genetics of quantitative traits: challenges and prospects. Nat Rev Genet 10:565–577

    Article  CAS  PubMed  Google Scholar 

  • McCouch SR, Cgsnl (2008) Gene nomenclature system for rice. Rice 1:72–84

    Article  Google Scholar 

  • McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, Garimella K, Altshuler D, Gabriel S, Daly M, DePristo MA (2010) The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res 20:1297–1303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shibaya T, Hori K, Ogiso-Tanaka E, Yamanouchi U, Shu K, Kitazawa N, Shomura A, Ando T, Ebana K, Wu J, Yamazaki T, Yano M (2016) Hd18, encoding histone acetylase related to Arabidopsis FLOWERING LOCUS D, is involved in the control of flowering time in rice. Plant Cell Physiol 57:1828–1838

    Article  CAS  PubMed  Google Scholar 

  • Song XJ, Kuroha T, Ayano M, Furuta T, Nagai K, Komeda N, Segami S, Miura K, Ogawa D, Kamura T, Suzuki T, Higashiyama T, Yamasaki M, Mori H, Inukai Y, Wu J, Kitano H, Sakakibara H, Jacobsen SE, Ashikari M (2015) Rare allele of a previously unidentified histone H4 acetyltransferase enhances grain weight, yield, and plant biomass in rice. Proc Natl Acad Sci USA 112:76–81

    Article  CAS  PubMed  Google Scholar 

  • Terao T, Nagata K, Morino K, Hirose T (2010) A gene controlling the number of primary rachis branches also controls the vascular bundle formation and hence is responsible to increase the harvest index and grain yield in rice. Theor Appl Genet 120:875–893

    Article  CAS  PubMed  Google Scholar 

  • Thomson M (2014) High-throughput SNP genotyping to accelerate crop improvement. Plant Breed Biotechnol 2:195–212

    Article  Google Scholar 

  • Veeresha BA, Rudra Naik V, Chetti MB, Desai SA, Biradar SS (2015) QTL mapping in crop plants: principles and applications. Int J Dev Res 5:2961–2965

    Google Scholar 

  • Wang K, Li M, Hakonarson H (2010) ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res 38:e164–e164

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang S, Wu K, Yuan Q, Liu X, Liu Z, Lin X, Zeng R, Zhu H, Dong G, Qian Q, Zhang G, Fu X (2012) Control of grain size, shape and quality by OsSPL16 in rice. Nat Genet 44:950–954

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Xiong G, Hu J, Jiang L, Yu H, Xu J, Fang Y, Zeng L, Xu E, Xu J, Ye W, Meng X, Liu R, Chen H, Jing Y, Wang Y, Zhu X, Li J, Qian Q (2015) Copy number variation at the GL7 locus contributes to grain size diversity in rice. Nat Genet 47:944–948

    Article  CAS  PubMed  Google Scholar 

  • Wang Z, Chen J-Y, Zhu Y-J, Fan Y-Y, Zhuang J-Y (2017) Validation of qGS10, a quantitative trait locus for grain size on the long arm of chromosome 10 in rice (Oryza sativa L.). J Integr Agric 16:16–26

    Article  CAS  Google Scholar 

  • Wang A, Hou Q, Si L, Huang X, Luo J, Lu D, Zhu J, Shangguan Y, Miao J, Xie Y, Wang Y, Zhao Q, Feng Q, Zhou C, Li Y, Fan D, Lu Y, Tian Q, Wang Z, Han B (2019) The PLATZ transcription factor GL6 affects grain length and number in rice. Plant Physiol 180:2077–2090

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Shang L, Yu H, Zeng L, Hu J, Ni S, Rao Y, Li S, Chu J, Meng X, Wang L, Hu P, Yan J, Kang S, Qu M, Lin H, Wang T, Wang Q, Hu X, Chen H, Wang B, Gao Z, Guo L, Zeng D, Zhu X, Xiong G, Li J, Qian Q (2020) A strigolactone biosynthesis gene contributed to the green revolution in rice. Mol Plant 13:923–932

    Article  PubMed  CAS  Google Scholar 

  • Wu W, Zheng X-M, Lu G, Zhong Z, Gao H, Chen L, Wu C, Wang H-J, Wang Q, Zhou K, Wang J-L, Wu F, Zhang X, Guo X, Cheng Z, Lei C, Lin Q, Jiang L, Wang H, Ge S, Wan J (2013) Association of functional nucleotide polymorphisms at DTH2 with the northward expansion of rice cultivation in Asia. Proc Natl Acad Sci USA 110:2775

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu X, Zhang M, Xu Q, Feng Y, Yuan X, Yu H, Wang Y, Wei X, Yang Y (2020) Quantitative trait loci identification and genetic diversity analysis of panicle structure and grain shape in rice. Plant Growth Regul 90:89–100

    Article  CAS  Google Scholar 

  • Xue W, Xing Y, Weng X, Zhao Y, Tang W, Wang L, Zhou H, Yu S, Xu C, Li X, Zhang Q (2008) Natural variation in Ghd7 is an important regulator of heading date and yield potential in rice. Nat Genet 40:761–767

    Article  CAS  PubMed  Google Scholar 

  • Yan WH, Wang P, Chen HX, Zhou HJ, Li QP, Wang CR, Ding ZH, Zhang YS, Yu SB, Xing YZ, Zhang QF (2011) A major QTL, Ghd8, plays pleiotropic roles in regulating grain productivity, plant height, and heading date in rice. Mol Plant 4:319–330

    Article  CAS  PubMed  Google Scholar 

  • Yan W, Liu H, Zhou X, Li Q, Zhang J, Lu L, Liu T, Liu H, Zhang C, Zhang Z, Shen G, Yao W, Chen H, Yu S, Xie W, Xing Y (2013) Natural variation in Ghd7.1 plays an important role in grain yield and adaptation in rice. Cell Res 23:969–971

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Ponce KS, Meng L, Chakraborty P, Zhao Q, Guo L, Gao Z, Leng Y, Ye G (2020) QTL identification for salt tolerance related traits at the seedling stage in indica rice using a multi-parent advanced generation intercross (MAGIC) population. Plant Growth Regul. https://doi.org/10.1007/s10725-020-00644-x

    Article  Google Scholar 

  • Zhu M, Liu D, Liu W, Li D, Liao Y, Li J, Fu C, Fu F, Huang H, Zeng X, Ma X, Wang F (2017) QTL mapping using an ultra-high-density SNP map reveals a major locus for grain yield in an elite rice restorer R998. Sci Rep 7:10914

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhuang JY, Fan YY, Wu JL, Xia YW, Zheng KL (2001) Comparison of the detection of QTL for yield traits in different generations of a rice cross using two mapping approaches. Acta Genet Sin 28:458–464

    CAS  PubMed  Google Scholar 

  • Zhuang JY, Fan YY, Rao ZM, Wu JL, Xia YW, Zheng KL (2003) Analysis on additive effects and additive-by-additive epistatic effects of QTLs for yield traits in a recombinant inbred line population of rice. Theor Appl Genet 105:1137–1145

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Key Research and Development Program (2016YFD0101801), the Fundamental Research Funds of Central Public Welfare Research Institutions (2017RG001-1), the Chinese Academy of Agricultural Sciences Innovation Project (CAAS-ASTIP-2013-CNRRI), and the Natural Science Foundation of Innovation Research Group (31521064). Funding bodies played no role in the design of the study in collection, analysis, interpretation of data or in writing the manuscript or decision to submit the article for publication. Thanks to Galal Bakr Anis for grammatically polishing this article.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Li-yong Cao or Ying-xin Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Electronic supplementary material 1 (TIF 91 kb)

Supplementary Figure 1. Work flow for RISL population development in the present study. LS, Lingshui; FY, Fuyang.

Electronic supplementary material 2 (PNG 2760 kb)

Supplementary Figure 2. Phylogenetic analysis of RISLs.

Electronic supplementary material 3 (XLSX 4203 kb)

Supplementary Table 1. The number of paired RISLs in each bin. Supplementary Table 2. Comparison of QTL identified from this and previous studies. Supplementary Table 3. The bin map of the RISL population. Supplementary Table 4. The linkage map of the RISL population.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, M., Zhou, Zp., Chen, Yy. et al. Finding new addictive QTL for yield traits based on a high-density genetic map in hybrid rice. Plant Growth Regul 93, 105–115 (2021). https://doi.org/10.1007/s10725-020-00669-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10725-020-00669-2

Keywords

Navigation