Skip to main content
Log in

Broadband supercontinuum generation based on filled structural photonic crystal fibers with low incident optical power

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

Highly nonlinear photonic crystal fibers (PCFs) can be used as a kind of new ways to realize the supercontinuum generation because of their highly nonlinear effects. Based on a type of material-filled method and structure, novel highly nonlinear PCFs are proposed to compare with the conventional highly nonlinear fiber for supercontinuum generation in this manuscript. The nonlinear coefficient and supercontinuum spectra varying with different parameters such as the hole-diameter, the hole-pitch and the refractive index of the filled material are investigated respectively and analyzed numerically. Even if lower incident optical power is used on the designed PCFs than that on the conventional fiber and the previous proposed PCFs, broadband supercontinuum can still be obtained easily from highly nonlinear effects. The results demonstrate that it is possible for this kind of novel PCFs to achieve the maximum 450 nm supercontinuum spectra, even though it is only 50-cm-long fiber and pumped by substantially lower incident optical power of 1.5 W near the wavelength of 1.55 µm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Ademgil, H., Haxha, S.: Bending insensitive large mode area photonic crystal fiber. Optik-Int. J. Light Electron Opt. 122(21), 1950–1956 (2011)

    Google Scholar 

  • Agrawal, G.P.: Nonlinear Fiber Optics. Springer, Berlin (2000)

    MATH  Google Scholar 

  • Alfano, R.R., Shapiro, S.L.: Emission in the region 4000–7000 Å via four-photon coupling in glass. Phys. Rev. Lett. 24(11), 584–587 (1970)

    ADS  Google Scholar 

  • Borgohain, N., Sharma, M., Konar, S.: Broadband supercontinuum generation in photonic crystal fibers using cosh-Gaussian pulses at 835 nm wavelength. Optik 127, 1630–1634 (2016)

    ADS  Google Scholar 

  • Díaz-Soriano, A., Ortiz-Mora, A., Dengra, A.: A new low-dispersion and large-effective-area PCF based on a fractal design. Opt. Fiber Technol. 21, 69–72 (2015)

    ADS  Google Scholar 

  • Diouf, M., Mandeng, L., Tchawoua, C., Zghal, M.: Numerical investigation of supercontinuum generation through AsSe2/As2S5 chalcogenide photonic crystal fibres and rib structures. J. Lightw. Technol. 37(22), 5692–5698 (2019)

    ADS  Google Scholar 

  • Dudley, J.M., Genty, G., Coen, S.: Supercontinuum generation in photonic crystal fiber. Rev. Modern. Phys. 78(4), 1135–1157 (2006)

    ADS  Google Scholar 

  • Dupont, S., Petersen, C., Thøgersen, J., Agger, C., Bang, O., Keiding, S.R.: IR microscopy utilizing intense supercontinuum light source. Opt. Express 20(5), 4887–4892 (2012)

    ADS  Google Scholar 

  • Haque, M.M., Rahman, M.S., Habib, M.S., Habi, M.S.: A single mode hybrid cladding circular photonic crystal fiber dispersion compensation and sensing applications. Photon. Nanostruct.-Fundam. Appl. 14, 63–70 (2015)

    ADS  Google Scholar 

  • Hartl, I., Li, X.D., Chudoba, C., Ghanta, R.K., Ko, T.H., Fujimoto, J.G., Ranka, J.K., Windeler, R.S.: Ultra high resolution optical coherence tomography using continuum generation in an air-silica microstructure optical fiber. Opt. Lett. 26(9), 608–610 (2001)

    ADS  Google Scholar 

  • Holzwarth, R., Udem, T., Hänsch, T.W., Knight, J.C., Wadsworth, W.J., Russell, P.S.J.: Optical frequency synthesizer for precision spectroscopy. Phys. Rev. Lett. 85(1), 2264–22267 (2000)

    ADS  Google Scholar 

  • Hsu, J.M.: Tailoring of nearly zero flattened dispersion photonic crystal fibers. Opt. Commun. 361, 104–109 (2016)

    ADS  Google Scholar 

  • Kang, Z., Xu, F., Yuan, J., et al.: Slow-nonlinearity assisted supercontinuum generation in a CS2-core photonic crystal fiber. IEEE J. Quantum Electron. 55(2), 1–9 (2019)

    Google Scholar 

  • Karasawa, N.: Dispersion properties of transverse an isotropic liquid crystal core photonic crystal fibers. Opt. Commun. 364, 1–8 (2016)

    ADS  Google Scholar 

  • Knight, J.C., Birks, T.A., Russell, P.S.J., Atkin, D.M.: All-silica single-mode optical fiber with photonic crystal cladding. Opt. Lett. 21, 1547–1549 (1996)

    ADS  Google Scholar 

  • Knight, J.C., Broeng, J., Birks, T.A., Russell, P.S.J.: Photonic band gap guidance in optical fibers. Science 282, 1476–1478 (1998)

    Google Scholar 

  • Koshiba, M.: Full vector analysis of photonic crystal fibers using the finite element method. In: IEICE Trans Electron 2002, E85-C4, pp. 881–888 (2002)

  • Lauterio-Cruz, J.P., Filoteo-Razo, J.D., Pottiez, O., et al.: Numerical comparative study of supercontinuum generation in photonic crystal fibers using noise-like pulses and ultrashort pulses. IEEE Photon. J. 11(5), 1–12 (2019)

    Google Scholar 

  • Meade, R.D., Rappe, A.M., Brommer, K.D., et al.: Accurate theoretical analysis of photonic band-gap materials. Phys. Rev. B 48(11), 8434–8437 (1993)

    ADS  Google Scholar 

  • Medjouri, A., Simohamed, L.M., Ziane, O., Boudriouad, A., Becer, Z.: Design of a circular photonic crystal fiber with flattened chromatic dispersion using a defected core and selectively reduced air holes: application to supercontinuum generation at 1.55 μm. Photon. Nanostruct.-Fundam. Appl. 16, 43–50 (2015)

    ADS  Google Scholar 

  • Nithyanandan, K., Raja, R.V.J., Porsezian, K., Uthayakumar, T.: A colloquium on the influence of versatile class of saturable nonlinear responses in the instability induced supercontinuum generation. Opt. Fiber Technol. 19, 348–358 (2013)

    ADS  Google Scholar 

  • Pniewski, J., Stepniewski, G., Kasztelanic, R., Siwicki, B., Pierscinska, D., Pierscinski, K., Pysz, D., Borzycki, K.: High numerical aperture large-core photonic crystal fiber for a broadband infrared transmission. Infrared Phys. Technol. 79, 10–16 (2016)

    ADS  Google Scholar 

  • Rui, H.: Highly birefringent photonic crystal fiber with a squeezed core and small modal area. Optik 127, 5245–5248 (2016)

    ADS  Google Scholar 

  • Saini, T.S., Kumar, A., Sinha, R.K.: Broadband mid-IR supercontinuum generation in As2Se3 based chalcogenide photonic crystal fiber: a new design and analysis. Opt. Commun. 347, 13–19 (2015)

    ADS  Google Scholar 

  • Schliesser, G.A., Picqué, N., Hänsch, T.W.: Mid-infrared frequency combs. Nat. Photon. 6(7), 40–449 (2012)

    Google Scholar 

  • Sharma, M., Konar, S.: Broadband supercontinuum generation in lead silicate photonic crystal fibers employing optical pulses of 50 W peak power. Opt. Commun. 380, 310–319 (2016)

    ADS  Google Scholar 

  • Shen, Y., et al.: Supercontinuum generation in large-mode-area photonic crystal fibers for coherent Raman microspectroscopy. Proc. SPIE 10522, 105220I (2018)

    Google Scholar 

  • Travers, J.C., Chang, W., Nold, J., Joly, N.Y., Russell, P.S.J.: Ultrafast nonlinear optics in gas-filled hollow-core photonic crystal fibers. J. Opt. Soc. Am. B 28(12), A11–A26 (2011)

    Google Scholar 

  • Yamanaka, M., Kawagoe, H., Nishizawa, N.: High-power supercontinuum generation using high-repetition-rate ultrashort-pulse fiber laser for ultrahigh-resolution optical coherence tomography in 1600 nm spectral band. Appl. Phys. Exp. 9(2), 022701 (2016)

    ADS  Google Scholar 

  • You, Y.J., Wang, C., Lin, Y.L., Zaytsev, A., Xue, P., Pan, C.L.: Ultrahigh-resolution optical coherence tomography at 1.3 µm central wavelength by using a supercontinuum source pumped by noise-like pulses. Laser Phys. Lett. 13(2), 025101 (2016)

    ADS  Google Scholar 

  • Zhang, Y.N.: Design and optimization of high birefringence low loss photonic crystal fiber with two zero dispersion wavelengths for nonlinear effects. Appl. Opt. 50(25), E125–E130 (2011)

    ADS  Google Scholar 

  • Zhang, R., Teipel, J., Giessen, H.: Theoretical design of a liquid-core photonic crystal fiber for supercontinuum generation. Opt. Express 14(15), 6800–6812 (2006)

    ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (No. 61975238), and in part by the Research Center of Optical Communications Engineering & Technology, Jiangsu Province (No. ZXF201901).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jianhua Li or Jingyuan Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Wang, J., Teng, Y. et al. Broadband supercontinuum generation based on filled structural photonic crystal fibers with low incident optical power. Opt Quant Electron 52, 447 (2020). https://doi.org/10.1007/s11082-020-02570-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-020-02570-8

Keywords

Navigation