Skip to main content

Advertisement

Log in

Interfacial Microstructure and Bonding Properties of Plasma-Sprayed Multilayer Ceramic Coating (Al2O3/BaTiO3/Al2O3-40 wt.% TiO2)

  • PEER REVIEWED
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

In multilayer coatings, the bonding mechanisms between the different layers determine the cohesive strength of the coatings, which in turn to a large extent controls the mechanical properties of coatings under different loading conditions. In this study, the interfacial bonding state and adhesive strength of a plasma-sprayed single-layer coating (Al2O3), a double-layer coating (Al2O3/BaTiO3), and a three-layer coating (Al2O3/BaTiO3/Al2O3-40 wt.% TiO2) were investigated, as well as their phase composition and microstructure. Scanning electron microscopy observation showed that the microstructure of the three ceramic coatings was relatively dense with a good interface bonding state. However, micro-cracks were observed in the smooth region of the double-layer coating interface, while pores were observed at the BaTiO3/Al2O3-40 wt.% TiO2 interface in the three-layer coating. Transmission electron microscopy observation revealed that element diffusion occurred at the interface. The diffusion depth at the Al2O3/BaTiO3 and BaTiO3/Al2O3-40 wt.% TiO2 interfaces reached 12 nm and 10 nm, respectively. Therefore, both mechanical interlocking (the dominant mechanism) and limited chemical diffusion contributed to interface adhesion in the multilayer coatings. The adhesion strengths of the double-layer, single-layer, and three-layer coatings were 40.1, 21.8, and 15.3 MPa, respectively. The latter exhibited the lowest adhesion strength mainly because of the relatively weak Al2O3/BaTiO3 interface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. R. Luo, P. Li, H. Wei, H. Chen, and K. Yang, Structure and Electrical Insulation Characteristics of Plasma-Sprayed Alumina Coatings Under Pressure, Ceram. Int., 2018, 44(6), p 6033-6036

    CAS  Google Scholar 

  2. Q. Yu, Z. Wu, and H. Chen, Dual-Function Antibacterial Surfaces for Biomedical Applications, Acta Biomater., 2015, 16(1), p 1-13

    Google Scholar 

  3. Y. Qing, J. Su, Q. Wen, F. Luo, D. Zhu, and W. Zhou, Enhanced Dielectric and Electromagnetic Interference Shielding Properties of FeSiAl/Al2O3 Ceramics by Plasma Spraying, J. Alloys Compd., 2015, 651, p 259-265

    CAS  Google Scholar 

  4. G. Barati Darband, M. Aliofkhazraei, S. Khorsand, S. Sokhanvar, and A. Kaboli, Science and Engineering of Superhydrophobic Surfaces: Review of Corrosion Resistance, Chemical and Mechanical Stability, Arab. J. Chem., 2020, 13(1), p 1763-1802

    CAS  Google Scholar 

  5. D. Chade, L. Berlouis, D. Infield, A. Cruden, P.T. Nielsen, and T. Mathiesen, Evaluation of Raney Nickel Electrodes Prepared by Atmospheric Plasma Spraying for Alkaline Water Electrolysers, Int. J. Hydrogen Energy, 2013, 38(34), p 14380-14390

    CAS  Google Scholar 

  6. J. Xu, V.K. Sarin, S. Dixit, and S.N. Basu, Stability of Interfaces in Hybrid EBC/TBC Coatings for Si-Based Ceramics in Corrosive Environments, Int. J. Refract. Met. Hard Mater., 2015, 49, p 339-349

    CAS  Google Scholar 

  7. Z. Xing, H. Wang, L. Zhu, X. Zhou, and Y. Huang, Properties of the BaTiO3 Coating Prepared by Supersonic Plasma Spraying, J. Alloys Compd., 2014, 582, p 246-252

    CAS  Google Scholar 

  8. S. Chen, C.K.I. Tan, K. Yao, and S. Sampath, Potassium-Sodium Niobate-Based Lead-Free Piezoelectric Ceramic Coatings by Thermal Spray Process, J. Am. Ceram. Soc., 2016, 99(10), p 3293-3299

    CAS  Google Scholar 

  9. S. Guo, L. Zhang, S. Chen, C.K.I. Tan, and K. Yao, Ultrasonic Transducers from Thermal Sprayed Lead-Free Piezoelectric Ceramic Coatings for In Situ Structural Monitoring for Pipelines, Smart Mater. Struct., 2019, 28(7), p 075031

    CAS  Google Scholar 

  10. T. Chraska and A.H. King, Transmission Electron Microscopy Study of Rapid Solidification of Plasma Sprayed Zirconia, Part II. Interfaces and Subsequent Splat Solidification, Thin Solid Films, 2001, 397, p 40-48

    CAS  Google Scholar 

  11. V.V. Sobolev, J.M. Guilemany, J. Nutting, and J.R. Miquel, Development of Substrate-Coating Adhesion in Thermal Spraying, Int. Mater. Rev., 1997, 42(3), p 117-136

    CAS  Google Scholar 

  12. Y. Yang, Z. Liu, Z. Liu, and Y. Chuang, Interfacial Phenomena in the Plasma Spraying Al2O3 + 13 wt% TiO2 Ceramic Coating, Thin Solid Films, 2001, 388, p 208-212

    Google Scholar 

  13. S. Costil, S. Lukat, C. Verdy, and C. Coddet, Influence of the Surface State on the Adherence of the Coating: Case of an Alumina Coating Plasma Sprayed on SiC Composites, J. Therm. Spray Technol., 2010, 20(1–2), p 68-75

    Google Scholar 

  14. S.-W. Yao, T. Liu, C.-J. Li, G.-J. Yang, and C.-X. Li, Epitaxial Growth During the Rapid Solidification of Plasma-Sprayed Molten TiO2 Splat, Acta Mater., 2017, 134, p 66-80

    CAS  Google Scholar 

  15. S.-W. Yao, C.-J. Li, J.-J. Tian, G.-J. Yang, and C.-X. Li, Conditions and Mechanisms for the Bonding of a Molten Ceramic Droplet to a Substrate After High-Speed Impact, Acta Mater., 2016, 119, p 9-25

    CAS  Google Scholar 

  16. S.-W. Yao, J.-J. Tian, C.-J. Li, G.-J. Yang, and C.-X. Li, Understanding the Formation of Limited Interlamellar Bonding in Plasma Sprayed Ceramic Coatings Based on the Concept of Intrinsic Bonding Temperature, J. Therm. Spray Technol., 2016, 25(8), p 1617-1630

    CAS  Google Scholar 

  17. P. Huo, W. Song, X. Zhou, H. Zhang, J. Jiang, S. Dong, X. Cao, and D.B. Dingwell, Microstructures and Properties of Sm2(Zr0.7Ce0.3)2O7/8YSZ Double-Ceramic-Layer Thermal Barrier Coatings Deposited by Atmospheric Plasma Spraying, J. Therm. Spray Technol., 2019, 28(5), p 986-999

    CAS  Google Scholar 

  18. F. Liu, H. Li, S. Gu, X. Yao, and Q. Fu, Microstructure and Oxidation Property of CrSi2-ZrSi2-Y2O3/SiC Coating Prepared on C/C Composites by Supersonic Atmosphere Plasma Spraying, Surf. Coat. Technol., 2019, 374, p 966-974

    CAS  Google Scholar 

  19. S. Chen, J. Xiang, J. Huang, and X. Zhao, Microstructures and Properties of Double-Ceramic-Layer Thermal Barrier Coatings of La2(Zr0.7Ce0.3)2O7/8YSZ Made by Atmospheric Plasma Spraying, Appl. Surf. Sci., 2015, 340, p 173-181

    CAS  Google Scholar 

  20. C.J. Li and A. Ohmori, Relationships Between the Microstructure and Properties of Thermally Sprayed Deposits, J. Therm. Spray Technol., 2003, 12(1), p 6-6

    CAS  Google Scholar 

  21. R. Mcpherson, A Review of Microstructure and Properties of Plasma Sprayed Ceramic Coatings, Surf. Coat. Technol., 1989, 40(part-P1), p 173-181

    Google Scholar 

  22. D. Zois, A. Lekatou, M. Vardavoulias, and A. Vazdirvanidis, Nanostructured Alumina Coatings Manufactured by Air Plasma Spraying: Correlation of Properties with the Raw Powder Microstructure, J. Alloys Compd., 2010, 495(2), p 611-616

    CAS  Google Scholar 

  23. G. Hou, Y. An, X. Zhao, H. Zhou, J. Chen, S. Li, X. Liu, and W. Deng, Improving Interfacial, Mechanical and Tribological Properties of Alumina Coatings on Al Alloy by Plasma Arc Heat-Treatment of Substrate, Appl. Surf. Sci., 2017, 411, p 53-66

    CAS  Google Scholar 

  24. M.S.A. Rahim, S. Nor Hayati, and H. Luay Bakir, Plasma Spray Ceramic Coating and Measurement of Developed Coating Behaviour, Int. J. Precis. Technol., 2009, 1(2), p 163-172

    Google Scholar 

  25. S. Sathish and M. Geetha, Microstructure and Corrosion Behaviour of Plasma Sprayed Bilayered Ceramic Coatings, Trans. Indian Ceram. Soc., 2015, 74(2), p 97-103

    CAS  Google Scholar 

  26. H.-D. Wang, J.-L. Ma, G.-L. Li, J.-J. Kang, and B.-S. Xu, The Dependency of Microstructure and Mechanical Properties of Nanostructured Alumina–Titania Coatings on Critical Plasma Spraying Parameter, Appl. Surf. Sci., 2014, 314, p 468-475

    CAS  Google Scholar 

  27. S. Li, Y. An, H. Zhou, and J. Chen, Plasma Sprayed YSZ Coatings Deposited at Different Deposition Temperatures, Part 1: Splats, Microstructures, Mechanical Properties and Residual Stress, Surf. Coat. Technol., 2018, 350, p 712-721

    CAS  Google Scholar 

  28. M.N. Baig and F.A. Khalid, Deposition and Characterization of Plasma Sprayed Ni-5A1/Magnesia Stabilized Zirconia Based Functionally Graded Thermal Barrier Coating, IOP Conf. Ser. Mater. Sci. Eng., 2014, 60, p 012053

    Google Scholar 

  29. D. Song, R. Wang, W. Liu, and X. He, Microstructure and Mechanical Properties of PbSn Alloys Deposited on Carbon Fiber Reinforced Epoxy Composites, J. Alloys Compd., 2010, 505(1), p 348-351

    CAS  Google Scholar 

  30. J. Ji, J. Zhou, X. Pang, S. Dong, R. Hu, and A. Hu, The Microstructure Model on the Residual Stress Distribution of Metal–Ceramic Coating, Comput. Mater. Sci., 2014, 85, p 332-339

    CAS  Google Scholar 

  31. H.C. Chen, E. Pfender, B. Dzur, and G. Nutsch, Microstructural Characterization of Radio Frequency and Direct Current Plasma-Sprayed Al2O3 coatings, J. Therm. Spray Technol., 2000, 9(2), p 264-273

    CAS  Google Scholar 

  32. E.-J. Yang, C.-J. Li, G.-J. Yang, C.-X. Li, and M. Takahashi, Effect of Intersplat Interface Bonding on the Microstructure of Plasma-Sprayed Al2O3 Coating, IOP Conf. Ser. Mater. Sci. Eng., 2014, 61, p 012022

    Google Scholar 

  33. G.-J. Yang, C.-X. Li, S. Hao, Y.-Z. Xing, E.-J. Yang, and C.-J. Li, Critical Bonding Temperature for the Splat Bonding Formation During Plasma Spraying of Ceramic Materials, Surf. Coat. Technol., 2013, 235, p 841-847

    CAS  Google Scholar 

  34. R. McPherson, Formation of Metastable Phases in Flame and Plasma-Prepared Alumina, J. Mater. Sci., 1973, 8(6), p 851-858

    CAS  Google Scholar 

  35. P. Ctibor, J. Sedlacek, and Z. Pala, Structure and Properties of Plasma Sprayed BaTiO3 Coatings After Thermal Posttreatment, Ceram. Int., 2015, 41(6), p 7453-7460

    CAS  Google Scholar 

  36. L.-M. Berger, K. Sempf, Y.J. Sohn, and R. Vaßen, Influence of Feedstock Powder Modification by Heat Treatments on the Properties of APS-Sprayed Al2O3-40% TiO2 Coatings, J. Therm. Spray Technol., 2018, 27(4), p 654-666

    CAS  Google Scholar 

  37. A. Richter, L.-M. Berger, Y.J. Sohn, S. Conze, K. Sempf, and R. Vaßen, Impact of Al2O3-40 wt% TiO2 Feedstock Powder Characteristics on the Sprayability, Microstructure and Mechanical Properties of Plasma Sprayed Coatings, J. Eur. Ceram. Soc., 2019, 39(16), p 5391-5402

    CAS  Google Scholar 

  38. R. McPherson, On the Formation of Thermally Sprayed Alumina Coatings, J. Mater. Sci., 1980, 15(12), p 3141-3149

    CAS  Google Scholar 

  39. L. Chen, G.-J. Yang, and C.-X. Li, Formation of Lamellar Pores for Splats via Interfacial or Sub-interfacial Delamination at Chemically Bonded Region, J. Therm. Spray Technol., 2017, 26(3), p 315-326

    CAS  Google Scholar 

  40. K.W. Kirby and B.A. Wechsler, Phase Relations in Barium Titanate-Titanium Oxide System, J. Am. Ceram. Soc., 1991, 74(8), p 1841-1847

    CAS  Google Scholar 

  41. S.Q. Armster, J.P. Delplanque, M. Rein, and E.J. Lavernia, Thermo-Fluid Mechanisms Controlling Droplet Based Materials Processes, Int. Mater. Rev., 2013, 47(6), p 265-301

    Google Scholar 

  42. R. Kromer, J. Cormier, and S. Costil, Role of Powder Granulometry and Substrate Topography in Adhesion Strength of Thermal Spray Coatings, J. Therm. Spray Technol., 2016, 25(5), p 933-945

    CAS  Google Scholar 

  43. J. Cedelle, M. Vardelle, and P. Fauchais, Influence of Stainless Steel Substrate Preheating on Surface Topography and on Millimeter- and Micrometer-Sized Splat Formation, Surf. Coat. Technol., 2006, 201(3–4), p 1373-1382

    CAS  Google Scholar 

  44. M.M. Dokur and G. Goller, Processing and Characterization of CYSZ/Al2O3 and CYSZ/Al2O3 + YSZ Multilayered Thermal Barrier Coatings, Surf. Coat. Technol., 2014, 258, p 804-813

    CAS  Google Scholar 

  45. S. Chandra and P. Fauchais, Formation of Solid Splats During Thermal Spray Deposition, J. Therm. Spray Technol., 2009, 18(2), p 148-180

    CAS  Google Scholar 

  46. H.R. Abedi, M. Salehi, and A. Shafyei, Mechanical and Thermal Properties of Double-Layer and Triple-Layer Thermal Barrier Coatings with Different Ceramic Top Coats Onto Polyimide Matrix Composite, Ceram. Int., 2017, 43(15), p 12770-12780

    CAS  Google Scholar 

  47. V.V. Sobolev and J.M. Guilemany, Droplet-Substrate Impact Interaction in Thermal Spraying, Mater. Lett., 1996, 28, p 331-335

    CAS  Google Scholar 

  48. J. Wang, X.T. Lou, C.J. Li, N. Ma, and M. Takahashi, Effect of Substrate Temperature on the Microstructure and Interface Bonding Interface Bonging Foemation of Plasma Sprayed Ni20Cr Splat, Surf. Coat. Technol., 2019, 371, p 36-46

    CAS  Google Scholar 

  49. Y. Zhang, S. Matthews, A.T.T. Tran, and M. Hyland, Effects of Interfacial Heat Transfer, Surface Tension and Contact Angle on the Formation of Plasma-Sprayed Droplets Through Simulation Study, Surf. Coat. Technol., 2016, 307, p 807-816

    CAS  Google Scholar 

  50. Y. Zhang, S. Matthews, and M. Hyland, Modelling the Spreading Behaviour of Plasma-Sprayed Nickel Droplets Under Different Impact Conditions, J. Phys. D, 2017, 50, p 275601

    Google Scholar 

  51. Y. Zhang, S. Matthews, and M. Hyland, Understanding the Formation of Plasma-Sprayed Ni20Cr Splats Through Interface Observation, Appl. Surf. Sci., 2019, 469, p 691-702

    CAS  Google Scholar 

  52. J.C.M. Peko, A.R. Ruiz-Salvador, and G. Rodr, Conductivity Activation Energy and Analysis of the Sintering Process of Dielectric Ceramics, Mater. Lett., 1998, 36, p 290-293

    Google Scholar 

  53. T. Hirata, K. Akiyama, and H. Yamamoto, Sintering Behavior of Cr2O3–Al2O3 Ceramics, J. Eur. Ceram. Soc., 2000, 20, p 195-199

    CAS  Google Scholar 

  54. K.A. Khor and Y.W. Gu, Effects of Residual Stress on the Performance of Plasma Sprayed Functionally Graded ZrO2/NiCoCrAlY Coatings, Mater. Sci. Eng. A, 2000, 277(1–2), p 64-76

    Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the National Natural Science Foundation of China (Grant Nos. 51775554 and 51535011) and the National Security Major Basic Research Program of China (973 Program, Grant No. 613283) for the financial support. Furthermore, the authors thank Dr. Li Qiang and Dr. Ma Wen (ZHONG KE BAI CE, China) for the TEM analysis. Additionally, the ability to perform tensile experiments as provided by Xia Xi-gong (University of Science and Technology Beijing, China) is greatly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhi-guo Xing or Hai-dou Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, L., Xing, Zg., Wang, Hd. et al. Interfacial Microstructure and Bonding Properties of Plasma-Sprayed Multilayer Ceramic Coating (Al2O3/BaTiO3/Al2O3-40 wt.% TiO2). J Therm Spray Tech 29, 2012–2025 (2020). https://doi.org/10.1007/s11666-020-01097-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-020-01097-4

Keywords

Navigation