Skip to main content
Log in

Efficacy of clay catalysts for the dehydration of fructose to 5-hydroxymethyl furfural in biphasic medium

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

5-Hydroxymethyl furfural (HMF) is one of the important platform chemical obtained from C6 sugars derived from biomass. The efficiency of montmorillonite clay catalysts (K-10, K-20, K-30, and Al pillared clay) has been systematically explored for the synthesis of HMF through dehydration of fructose in a biphasic solvent system. The catalysts were characterized by XRD, N2 sorption, 27Al MAS NMR, 29Si NMR and FT-IR of chemisorbed pyridine. Acid treated K-10 catalyst was found to be the best among the clay catalysts tested. Various reaction parameters such as reaction temperature, catalyst content, solvent were optimized for achieving better yield of HMF. Under optimized reaction conditions, K-10 catalyst affords 80 mol% fructose conversion with HMF yield of 61 mol%. Insight into the type of acid sites essential for such cascade reactions has been furnished. Utilization of clay catalysts for HMF production will be beneficial to improve overall economics for the production of platform chemicals like HMF from biomass-derived raw materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 1
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. W. Den, V.K. Sharma, M. Lee, G. Nadadur, R.S. Varma, Front. Chem. 6, 1–23 (2018)

    Google Scholar 

  2. J.M.R. Gallo, M.A. Trapp, J. Braz, Chem. Soc. 28, 1586–1607 (2017)

    CAS  Google Scholar 

  3. A. Corma, S. Iborra, A. Velty, Chem. Rev. 107(6), 2411–2502 (2007)

    CAS  PubMed  Google Scholar 

  4. A. Rosatella, S. Simeonov, R. Frade, C. Afonso, Green Chem. 13, 754–793 (2011)

    CAS  Google Scholar 

  5. N. Lucas, L. Gurrala, S.B. Halligudi, Mol. Catal. 490, 110966 (2020)

    CAS  Google Scholar 

  6. D.K. Mishra, H.J. Lee, J. Kim, H.S. Lee, J.K. Cho, Y.W. Suh, Y. Yi, Y.J. Kim, Green Chem. 19, 1619–1623 (2017)

    CAS  Google Scholar 

  7. B. Donoeva, N. Masoud, P.E. de Jongh, ACS Catal. 7(7), 4581–4591 (2017)

    CAS  PubMed  PubMed Central  Google Scholar 

  8. E. Hayashi, T. Komanoya, K. Kamata, M. Hara, Chemsuschem 10, 654–658 (2017)

    CAS  PubMed  Google Scholar 

  9. A.S. Nagpure, N. Lucas, S. Chilukuri, ACS Sustain. Chem. Eng. Energ. Fuel. https://doi.org/10.1039/D0SE00361A

  10. S.V.V. Chilukuri, A.S. Nagpure, N. Lucas, US Patent 9757713B2 (2017)

  11. A.J. Sanborn, P.D. Bloom, US Patent 7579490 (2009)

  12. S. Subbaih, S.P. Simeonov, J.M. Esperanea, L.P. Rebelo, C.A. Afonso, Green Chem. 15, 2849–2853 (2013)

    Google Scholar 

  13. N. Lucas, L. Gurrala, A. Athawale, J. Porous Mater. 26, 1335–1343 (2019)

    Google Scholar 

  14. F.J.H. Madina, A. Pizzi, S. Abdala, J. Renew. Mater. (2020). https://doi.org/10.7569/JRM.2017.634166

    Article  Google Scholar 

  15. C.H. Hsieh, H.J. Liou, US9725552B2 (2017)

  16. C. Antonetti, M. Melloni, D. Licursi, S. Fulignati, E. Ribechini, S. Rivas, J.C. Parajo, F. Cavani, A.M.R. Galletti, Appl. Catal. B Environ. 206, 364–377 (2017)

    CAS  Google Scholar 

  17. N.I. Villanuela, T.G. Marzialetti, Catal. Today 302, 100–107 (2018)

    Google Scholar 

  18. D. Mun, N. Huynh, S. Shin, Y.J. Kim, S. Kim, Y.G. Shul, J.K. Cho, Res. Chem. Intermed. 43, 5495–5506 (2017)

    CAS  Google Scholar 

  19. K. Dong, J. Zhang, W. Luo, L. Su, Z. Huang, Chem. Eng. J. 334, 1055–1064 (2018)

    CAS  Google Scholar 

  20. J. Zhang, A. Das, R.S. Assary, L.A. Curtiss, E. Weitz, Appl. Catal. B Environ. 181, 874–887 (2016)

    CAS  Google Scholar 

  21. S. Siankevich, Z. Fei, R. Scopelliti, P.G. Jessop, J. Zhang, N. Yan, P.J. Dyson, Chemsuschem 9, 2089–2096 (2016)

    CAS  PubMed  Google Scholar 

  22. H. Stalberg, W. Fu, J.M. Woodley, A. Riisager, Chemsuschem 4, 451–458 (2011)

    Google Scholar 

  23. F. Delbecq, Y.T. Wang, C. Len, Mol. Catal. 434, 80–85 (2017)

    CAS  Google Scholar 

  24. H. Xia, H. Hu, S. Xu, K. Xiao, S. Zuo, Biomass Bioenergy 108, 426–432 (2018)

    CAS  Google Scholar 

  25. L. Atanda, M. Konarova, Q. Ma, S. Mukundan, A. Shrotri, A. Beltramini, Catal. Sci. Technol. 6, 6257–6266 (2016)

    CAS  Google Scholar 

  26. Y.J.P. Torres, T. Wang, J.M.R. Gallot, B.H. Shanks, J.A. Dumesic, Green Chem. 2(6), 930–934 (2012)

    Google Scholar 

  27. P. Wrigstedt, J. Keskivali, T. Repo, RSC Adv. 6, 18973–18979 (2016)

    CAS  Google Scholar 

  28. W.Q. Wei, S.B. Wu, Waste Biomass Valor. 8, 1303–1311 (2017)

    CAS  Google Scholar 

  29. H.M. Mirzaci, B. Karimi, Green Chem. 16, 2282–2286 (2016)

    Google Scholar 

  30. C. Moreau, R. Durand, S. Razigade, J. Duhamet, P. Faugeras, P. Rivalier, G. Avignon, Appl. Catal. A Gen. 145, 211–224 (1996)

    CAS  Google Scholar 

  31. J.J. Wang, Z.C. Tan, C.C. Zhu, G. Miao, C.Z. Kong, Y.H. Slen, Green Chem. 18, 452–460 (2016)

    CAS  Google Scholar 

  32. L. Zhang, G. Xi, Z. Chen, Z. Qi, X. Wang, Chem. Eng. J. 307, 877–883 (2017)

    CAS  Google Scholar 

  33. N. Lucas, G. Kokate, A. Nagpure, S. Chilukuri, Microporous Mesoporous Mater. 181, 38–46 (2013)

    CAS  Google Scholar 

  34. J.J. Wiesfeld, N.A. Sommerdijk, E.J.M. Hensen, Catal. Lett. 148, 3093–3101 (2018)

    CAS  Google Scholar 

  35. J. Zhong, Y. Guo, J. Chen, J. Energy Chem. 26, 147–154 (2017)

    Google Scholar 

  36. D. Chen, F. Liang, D. Feng, M. Xian, H. Zhang, H. Liu, F. Du, Chem. Eng. J. 15, 177–184 (2016)

    Google Scholar 

  37. J.M. Ravasia, J.A. Coelho, S.P. Simeonov, C.A.M. Afonso, RSC Adv. 7, 7555–7559 (2017)

    Google Scholar 

  38. J. Dai, L. Zhu, D. Tang, X. Fu, J. Tang, X. Guo, C. Hu, Green Chem. 19, 1932–1939 (2017)

    CAS  Google Scholar 

  39. Y. Su, G. Chang, Z. Zhang, H. Xing, B. Su, Q. Yang, Q. Ren, Y. Yang, Z. Bao, React. Eng. Kinet. Catal. 62, 4403–4417 (2016)

    CAS  Google Scholar 

  40. B. Agarwal, K. Kailasam, R.S. Sangwan, S. Elumali, Renew. Sustain. Energy Rev. 82, 2408–2425 (2018)

    CAS  Google Scholar 

  41. L. Murleedharan, B.M. Chandrashekhara, S.J. Prakash, Y.S. Bhat, Chem. Sel. 3, 801–808 (2018)

    Google Scholar 

  42. C.N. Rhodes, D.N. Brown, J. Chem. Soc. Faraday Trans. 88(15), 2269–2274 (1992)

    CAS  Google Scholar 

  43. R. Mokaya, W. Jones, J. Catal. 153, 76–85 (1995)

    CAS  Google Scholar 

  44. M.A. Rodriguez, D.L. Gonzalez, M.A. Banaresmunoz, Clay Miner. 29, 361–367 (1994)

    Google Scholar 

  45. C. Pesquera, F. Gonzalez, I. Benito, C. Blanco, S. Mendioroz, J. Pajares, J. Mater. Chem. 2(9), 907–911 (1992)

    CAS  Google Scholar 

  46. M. Onal, Y. Sarikaya, T. Alemdaroglu, Turk. J. Chem. 26, 409–412 (2002)

    CAS  Google Scholar 

  47. J.T. Kloprogge, E. Booy, J.B.H. Jansen, J.W. Geus, Clay Miner. 29, 153–167 (1994)

    CAS  Google Scholar 

  48. J.T. Kloprogge, J. Porous Mater. 5, 5–41 (1998)

    CAS  Google Scholar 

  49. D. Plee, F. Borg, L. Gatineau, J.J. Fripiat, J. Am. Chem. Soc. 107, 2362–2369 (1985)

    CAS  Google Scholar 

  50. C. Breen, F.D. Zahoor, J. Phys. Chem. B 101, 5324–5331 (1997)

    CAS  Google Scholar 

  51. W.M. Meier, D.H. Olson, in Atlas of zeolite structure types, 3rd ed. (on behalf of structure commission of the international zeolites association, 1992)

  52. A. Chica, K.G. Strohmaier, E. Iglesia, Appl. Catal. B 60, 223–232 (2005)

    CAS  Google Scholar 

  53. V. Flessner, D.J. Jones, J. Roziere, J. Zajac, L. Storaro, M. Lenarda, M. Pavan, A. Lopez, E.R. Castellon, M. Trombetta, G. Busca, J. Mol. Catal. A Chem. 168, 247–256 (2001)

    CAS  Google Scholar 

  54. T.S. Hansen, J. Meilby, A. Riisager, Green Chem. 13, 109–114 (2011)

    CAS  Google Scholar 

Download references

Acknowledgements

Nishita Lucas acknowledges University Grant Commission, India for providing D.S. Kothari postdoctoral fellowship.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Nishita Lucas or Satyanarayana Chilukuri.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 140 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lucas, N., Nagpure, A.S., Gurrala, L. et al. Efficacy of clay catalysts for the dehydration of fructose to 5-hydroxymethyl furfural in biphasic medium. J Porous Mater 27, 1691–1700 (2020). https://doi.org/10.1007/s10934-020-00943-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-020-00943-8

Keywords

Navigation