Skip to main content
Log in

4-Dimethylaminopyridine grafted on MCM-41 as an efficient and highly stable catalyst for the production of α-tocopherol acetate

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

N,N′-dimethyl-N-(4-pyridyl)-1,2-ethanediamine (DMPE) as a special N-alkylation precursor of 4-dimethylaminopyridine (DMAP) was grafted on the surface of γ-chloropropylated functionalized mesoporous silica MCM-41 to prepare immobilized DMAP. Characterization results of small angle X-ray diffraction, thermogravimetry and derivative thermogravimetry, Fourier transform infrared, scanning electron microscopy, energy-dispersive X-ray and transmission electron microscopy indicated that DMAP was successfully covalently bound to the surface of MCM-41. The highest loading of DMAP reached 0.9 mmol/g, which was 2.5 times higher than that of DMAP immobilized on the normal silica gel. The prepared immobilized DMAP as nucleophilic heterogeneous catalysts was successfully used for the acetylation reaction to produce α-tocopherol acetate. The highest yield reached 90.1% under the optimal condition which was summarized as follows: immobilized DMAP 100 mg, substrates mole ratio (acetic anhydride/α-tocopherol) 3:1, reaction temperature 50 ℃, stirring intensity 500 rpm, reaction in toluene for 12 h. The recyclability and stability of the DMAP grafted MCM-41 were excellent, as demonstrated by its use 20 times during batch operation without any loss of productivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Scheme 1
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. A.B. Gangurde, M.T. Ali, J.N. Pawar, P. Amin, J. Pharm. Investig. 47, 559 (2017)

    CAS  Google Scholar 

  2. X. Luo, P. Zhao, H. Zhang, S. Feng, K. Chen, Z. Chen, Colloids Surf. A 581, 123837 (2019)

    CAS  Google Scholar 

  3. P. Torres, D. Reyesduarte, N. Lopezcortes, M. Ferrer, A. Ballesteros, F.J. Plou, Process Biochem. 43, 145 (2008)

    CAS  Google Scholar 

  4. S. Mayer, J. Weiss, D.J. Mcclements, J. Colloid Interface Sci. 404, 215 (2013)

    CAS  PubMed  Google Scholar 

  5. Y. Yang, E.A. Decker, H. Xiao, D.J. Mcclements, Food Funct. 6, 83 (2015)

    CAS  Google Scholar 

  6. W. Bonrath, T. Netscher, Appl Catal A-Gen 280, 55 (2005)

    CAS  Google Scholar 

  7. H.L.C. Hu, J. Fu, X. Zhao, Q. Zhang, Modern Food Sci. Technol. 21, 85 (2005)

    Google Scholar 

  8. T. Kurahashi, T. Mizutani, J. Yoshida, Tetrahedron 58, 8669 (2002)

    CAS  Google Scholar 

  9. S. Alahmadi, Orient. J. Chem. 28, 01 (2012)

    CAS  Google Scholar 

  10. A. Ghorbani-Choghamarani, M. Mohammadi, T. Tamoradi, M. Ghadermazi, Polyhedron 158, 25 (2019)

    CAS  Google Scholar 

  11. M. Mohammadi, A. Ghorbani-Choghamarani, New J. Chem. 44, 2919 (2020)

    CAS  Google Scholar 

  12. M. Kazemi, M. Mohammadi, Appl. Organomet. Chem. 34, e5400 (2019)

    Google Scholar 

  13. D.E. Bergbreiter, P.L. Osburn, C. Li, Org. Lett. 4, 737 (2002)

    CAS  PubMed  Google Scholar 

  14. N.A. Brunelli, W. Long, K. Venkatasubbaiah, C.W. Jones, Top. Catal. 55, 432 (2012)

    CAS  Google Scholar 

  15. H. Chen, S. Huh, J.W. Wiench, M. Pruski, V.S.Y. Lin, J. Am. Chem. Soc. 127, 13305 (2005)

    CAS  PubMed  Google Scholar 

  16. A. Corma, H. Garcia, A. Leyva, Chem. Commun. 2806 (2003)

  17. C.O. Dalaigh, S.A. Corr, Y.K. Gunko, S.J. Connon, Angew. Chem. 46, 4329 (2007)

    CAS  Google Scholar 

  18. V. Delia, Y. Liu, H. Zipse, Eur. J. Org. Chem. 2011, 1527 (2011)

    Google Scholar 

  19. K. Motokura, M. Tomita, M. Tada, Y. Iwasawa, Top. Catal. 52, 579 (2009)

    CAS  Google Scholar 

  20. K.E. Price, B.P. Mason, A.R. Bogdan, S.J. Broadwater, J.L. Steinbacher, D.T. Mcquade, J. Am. Chem. Soc. 128, 10376 (2006)

    CAS  PubMed  Google Scholar 

  21. R.A. Shiels, C.W. Jones, J. Mol. Catal. A-Chem. 261, 160 (2007)

    CAS  Google Scholar 

  22. R. Wei, Y. Liang, S. Chen, C. Jia, F. Li, T. Zhang, J. Appl. Polym. Sci. 84, 1067 (2002)

    CAS  Google Scholar 

  23. M. Nikoorazm, M. Khanmoradi, M. Mohammadi, Appl. Organomet. Chem. 34, e5504 (2020)

    CAS  Google Scholar 

  24. H. Filian, A. Ghorbani-Choghamarani, E. Tahanpesar, J. Porous Mater. 26, 1091 (2019)

    CAS  Google Scholar 

  25. H.I. Meléndez-Ortiz, B. Puente-Urbina, G. Castruita-de Leon, C. Gallardo-Vega, E. Saucedo-Salazar, J. Porous Mater. 24, 1527 (2017)

    Google Scholar 

  26. Y. Xiao, H. Liao, X. Yu, X. Liu, H. He, H. Zhong, M. Liang, J. Porous Mater. 26, 765 (2019)

    CAS  Google Scholar 

  27. J.A.S. Costa, R.A. de Jesus, D.O. Santos, J.F. Mano, L.P.C. Romão, C.M. Paranhos, Microporous Mesoporous Mater. 291, 109698 (2020)

    CAS  Google Scholar 

  28. H. Filian, A. Kohzadian, M. Mohammadi, A. Ghorbani-Choghamarani, A. Karami, Appl. Organomet. Chem. 34, e5579 (2020)

    CAS  Google Scholar 

  29. G. Martínez-Edo, A. Balmori, I. Pontón, A. Martí del Rio, D. Sánchez-García, Catalysts, 8, 617 (2018)

    Google Scholar 

  30. B. Li, D. Chen, X. Zhang, W. Dong, B. Zhao, Chem Pap, 72, 1339 (2018)

    CAS  Google Scholar 

  31. H. Cho, Z. Zhong, Y. Zhao, Tetrahedron 65, 7311 (2009)

    CAS  Google Scholar 

  32. M. Nikoorazm, A. Ghorbani-Choghamarani, N. Noori, Res. Chem. Intermed. 42, 4621 (2015)

    Google Scholar 

  33. M. Nikoorazm, A. Ghorbani-Choghamarani, N. Noori, J. Porous Mater. 22, 877 (2015)

    CAS  Google Scholar 

  34. T. Blasco, A. Corma, M.T. Navarro, J.P. Pariente, J. Catal. 156, 65 (1995)

    CAS  Google Scholar 

  35. Y. Cesteros, G.L. Haller, Microporous Mesoporous Mater. 43, 171 (2001)

    CAS  Google Scholar 

  36. Q. Shi, Z. Tan, Y. Di, B. Tong, Y. Li, S. Wang, Journal of Chemical & Engineering Data 52, 941 (2007)

    CAS  Google Scholar 

  37. K.M.S. Khalil, J Colloid Interface Sci 315, 562 (2007)

    CAS  PubMed  Google Scholar 

  38. S. Alekseev, V.N. Zaitsev, J. Fraissard, Chem. Mater., 18, 1981 (2006).

    CAS  Google Scholar 

  39. A.N. Kursunlu, E. Guler, H. Dumrul, O. Kocyigit, I.H. Gubbuk, Appl. Surf. Sci. 255, 8798 (2009)

    CAS  Google Scholar 

  40. S.M. Evangelista, E. Deoliveira, G.R. Castro, L.F. Zara, A.G.S. Prado, Surf. Sci. 601, 2194 (2007)

    CAS  Google Scholar 

  41. P. Horcajada, A. Ramila, G. Ferey, M. Valletregi, Solid State Sci 8, 1243 (2006)

    CAS  Google Scholar 

  42. H. Yoshitake, T. Yokoi, T. Tatsumi, Chem. Mater. 14, 4603 (2002)

    CAS  Google Scholar 

  43. M. Puanngam, F. Unob, J. Hazard. Mater. 154, 578 (2008)

    CAS  PubMed  Google Scholar 

  44. N. Sundaraganesan, S. Kalaichelvan, C. Meganathan, B.D. Joshua, J.P. Cornard, Spectrochim. Acta A Mol. Biomol. Spectrosc. 71, 898 (2008)

    CAS  PubMed  Google Scholar 

  45. T.C.D. Santos, S. Bourrelly, P.L. Llewellyn, J.W.D.M. Carneiro, C.M. Ronconi, PCCP 17, 11095 (2015)

    PubMed  Google Scholar 

  46. S. Xu, I. Held, B. Kempf, H. Mayr, W. Steglich, H. Zipse, Chem. Eur. J. 11, 4751 (2005)

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by Key Research and Invention Program in Shaanxi Province of China (Program Nos. 2018NY-131 and 2020NY-127).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaoli Zhang or Binglin Li.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Electronic supplementary material 1 (PDF 792 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, T., Li, B., Zhang, X. et al. 4-Dimethylaminopyridine grafted on MCM-41 as an efficient and highly stable catalyst for the production of α-tocopherol acetate. J Porous Mater 27, 1639–1648 (2020). https://doi.org/10.1007/s10934-020-00939-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-020-00939-4

Keywords

Navigation