Skip to main content
Log in

Preparation of activated carbon monolith from waste corrugated cardboard box via catalytic pyrolysis and gasification under CO2 atmosphere for adsorption and solar steam generation

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

Activated carbon monolith (ACM) was prepared from waste corrugated cardboard box (WCCB) via slurrying in seawater (SW) followed by dewatering, molding and heating under CO2 atmosphere. The thermal process was analyzed by thermogravimetric analyzer coupled with Fourier transform infrared spectrometer (TG-FTIR). ACM was characterized by N2-adsorption/desorption, FTIR, Raman spectroscopy and ultraviolet–visible-near infrared (UV–Vis-NIR) spectroscopy. The adsorption behavior of ACM for methylene blue (MB) and its solar steam generation performance were investigated. Results showed alkali and alkaline earth metals (AAEMs) in SW promoted the occurrence of pyrolysis of cellulose in WCCB at lower temperatures but inhibited the formation of organic volatiles, and the activation energy was reduced by 24.53 kJ mol−1. AAEMs catalyzed the formation of more CO during CO2 gasification of WCCB char between 755 and 860 °C, and the activation reaction with higher degree led to the formation of more micro- and mesopores in ACM at 785 °C. The adsorption behavior of ACM for MB fitted Langmuir model with a monolayer adsorption capacity of 174 mg g−1, and ACM in floating state was also effective in adsorption of MB from water. ACM exhibited high optical absorption above 90% within a broadband wavelength, and 66.7% higher water evaporation can be achieved with the assistance of ACM during solar steam generation under the same condition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. L. Largitte, R. Pasquier, Chem. Eng. Res. Des. 109, 495 (2016)

    CAS  Google Scholar 

  2. Z. Anfar, H. Ait Ahsaine, M. Zbair, A. Amedlous, A. Ait El Fakir, A. Jada, N. ElAlem, Crit. Rev. Environ. Sci. Technol. 50, 1043 (2019)

    Google Scholar 

  3. L. Huang, Y. Sun, W. Wang, Q. Yue, T. Yang, Chem. Eng. J. 171, 1446 (2011)

    CAS  Google Scholar 

  4. N. Bouchenafa-Saïb, A. Mekarzia, B. Bouzid, O. Mohammedi, A. Khelifa, K. Benrachedi, N. Belhaneche, Desalination Water Treat. 52, 4920 (2013)

    Google Scholar 

  5. W.-T. Tsai, Y.-C. Bai, Y.-Q. Lin, Y.-C. Lai, C.-H. Tsai, Biomass Convers. Biorefin. 10, 35 (2019)

    Google Scholar 

  6. M.D.À. Tejero, E. Jové, P. Carmona, V. Gomez, V. García-Molina, J. Villa, S. Das, Desalination Water Treat. 100, 21 (2017)

    Google Scholar 

  7. S.F. Lütke, A.V. Igansi, L. Pegoraro, G.L. Dotto, L.A.A. Pinto, T.R.S. Cadaval, J. Environ. Chem. Eng. 7, 103396 (2019)

    Google Scholar 

  8. L. Alwary, M. Gafar, A. Rumie, Chem. Eng. Technol. 34, 1883 (2011)

    CAS  Google Scholar 

  9. Y. Lin, H. Xu, X. Shan, Y. Di, A. Zhao, Y. Hu, Z. Gan, J. Mater. Chem. A 7, 19203 (2019)

    CAS  Google Scholar 

  10. J. Jia, W. Liang, H. Sun, Z. Zhu, C. Wang, A. Li, Chem. Eng. J. 361, 999 (2019)

    CAS  Google Scholar 

  11. F. Liu, B. Zhao, W. Wu, H. Yang, Y. Ning, Y. Lai, R. Bradley, Adv. Funct. Mater. 28, 1803266 (2018)

    Google Scholar 

  12. C. Chen, Y. Kuang, L. Hu, Joule 3, 683 (2019)

    CAS  Google Scholar 

  13. Z. Yu, S. Cheng, C. Li, Y. Sun, B. Li, Sol. Energy 193, 434 (2019)

    CAS  Google Scholar 

  14. L. Sun, J. Liu, Y. Zhao, J. Xu, Y. Li, Carbon 145, 352 (2019)

    CAS  Google Scholar 

  15. Y. Chen, Y. Shi, H. Kou, D. Liu, Y. Huang, Z. Chen, B. Zhang, ACS Sustain. Chem. Eng. 7, 2911 (2019)

    CAS  Google Scholar 

  16. J. Zhao, L. Yang, F. Li, R. Yu, C. Jin, Carbon 47, 744 (2009)

    CAS  Google Scholar 

  17. J. Pallarés, A. González-Cencerrado, I. Arauzo, Biomass Bioenergy 115, 64 (2018)

    Google Scholar 

  18. M.J. Ahmed, Environ. Toxicol. Pharm. 50, 1 (2017)

    CAS  Google Scholar 

  19. S.-J. Yuan, J.-J. Zhang, H.-X. Fan, X.-H. Dai, J. Clean. Prod. 196, 644 (2018)

    CAS  Google Scholar 

  20. Z. Ding, X. Xu, T. Phan, X. Hu, Pol. J. Environ. Stud. 27, 2483 (2018)

    CAS  Google Scholar 

  21. M. Fujishige, I. Yoshida, Y. Toya, Y. Banba, K.-I. Oshida, Y.-S. Tanaka, P. Dulyaseree, W. Wongwiriyapan, K. Takeuchi, J. Environ. Chem. Eng. 5, 1801 (2017)

    CAS  Google Scholar 

  22. M.A. Yahya, Z. Al-Qodah, C.W.Z. Ngah, Renew. Sustain. Energy Rev. 46, 218 (2015)

    CAS  Google Scholar 

  23. E. Taer, M. Deraman, I.A. Talib, A.A. Umar, M. Oyama, R.M. Yunus, Curr. Appl. Phys. 10, 1071 (2010)

    Google Scholar 

  24. S. Tazibet, L.F. Velasco, P. Lodewyckx, D. Abou M’Hamed, Y. Boucheffa, J. Porous Mater. 25, 329 (2018)

    CAS  Google Scholar 

  25. J. Baek, H.-M. Lee, J.-S. Roh, H.-S. Lee, H.S. Kang, B.-J. Kim, Microporous Mesoporous 219, 258 (2016)

    CAS  Google Scholar 

  26. T. Zhang, W. Walawender, L. Fan, M. Fan, D. Daugaard, R. Brown, Chem. Eng. J. 105, 53 (2004)

    CAS  Google Scholar 

  27. B. Tian, P. Li, D. Li, Y. Qiao, D. Xu, Y. Tian, J. Porous Mater. 25, 989 (2018)

    CAS  Google Scholar 

  28. K. Yang, J. Peng, H. Xia, L. Zhang, C. Srinivasakannan, S. Guo, J. Taiwan Inst. Chem. Eng. 41, 367 (2010)

    CAS  Google Scholar 

  29. J. Phuriragpitikhon, P. Ghimire, M. Jaroniec, J. Colloid Interface Sci. 558, 55 (2020)

    PubMed  Google Scholar 

  30. P.C. Vilella, J.A. Lira, D.C.S. Azevedo, M. Bastos-Neto, R. Stefanutti, Ind. Crop. Prod. 109, 134 (2017)

    CAS  Google Scholar 

  31. L.-Q. Duan, Q.-S. Ma, L.-J. Ma, L. Dong, B. Wang, X.-Q. Dai, B. Zhang, New Carbon Mater. 34, 367 (2019)

    Google Scholar 

  32. P. Lahijani, Z.A. Zainal, A.R. Mohamed, M. Mohammadi, Bioresour. Technol. 144, 288 (2013)

    CAS  PubMed  Google Scholar 

  33. N. Sadhwani, S. Adhikari, M.R. Eden, Z. Wang, R. Baker, Fuel Process Technol. 150, 64 (2016)

    CAS  Google Scholar 

  34. E.M.A. Edreis, X. Li, C. Xu, H. Yao, J. Mater. Res. Technol. 6, 147 (2017)

    CAS  Google Scholar 

  35. X.-P. Zhang, C. Zhang, P. Tan, X. Li, Q.-Y. Fang, G. Chen, Fuel Process Technol. 172, 200 (2018)

    Google Scholar 

  36. G. Atzori, S. Mancuso, E. Masi, Sci. Hortic. 249, 199 (2019)

    Google Scholar 

  37. R. Ma, Y. Ma, Y. Gao, J. Cao, SN Appl. Sci. 2, 171 (2020)

  38. Y. Liu, C. Yan, Z. Zhang, Y. Gong, H. Wang, X. Qiu, Mater. Lett. 185, 370 (2016)

    CAS  Google Scholar 

  39. J. Cao, Y. Ma, Prog. React. Kinet. Mech. 44, 132 (2019)

    CAS  Google Scholar 

  40. Y. Ma, J. Wang, Y. Zhang, J. Therm. Anal. Calorim. 129, 1225 (2017)

    CAS  Google Scholar 

  41. M. Nishimura, S. Iwasaki, M. Horio, J. Taiwan Inst. Chem. 40, 630 (2009)

    CAS  Google Scholar 

  42. N. Shimada, H. Kawamoto, S. Saka, Carbohydr. Res. 342, 1373 (2007)

    CAS  PubMed  Google Scholar 

  43. G. Bellesia, S. Gnanakaran, Cellulose 20, 2695 (2013)

    CAS  Google Scholar 

  44. D. Liu, Y. Yu, Y. Long, H. Wu, Proc. Combust. Inst. 35, 2381 (2015)

    CAS  Google Scholar 

  45. D. Liu, Y. Yu, H. Wu, Ind. Eng. Chem. Res. 52, 12785 (2013)

    CAS  Google Scholar 

  46. H. Yang, R. Yan, H. Chen, D.H. Lee, C. Zheng, Fuel 86, 1781 (2007)

    CAS  Google Scholar 

  47. X. Yang, Z. Fu, D. Han, Y. Zhao, R. Li, Y. Wu, Renew. Energy 147, 1120 (2020)

    CAS  Google Scholar 

  48. Q. Liu, S. Wang, Z. Luo, K. Cen, J. Chem. Eng. Jpn. 41, 1133 (2008)

    CAS  Google Scholar 

  49. S. Wang, X. Guo, K. Wang, Z. Luo, J. Anal. Appl. Pyrolysis 91, 183 (2011)

    CAS  Google Scholar 

  50. Q. Liu, Z. Zhong, S. Wang, Z. Luo, J. Anal. Appl. Pyrolysis 90, 213 (2011)

    CAS  Google Scholar 

  51. D. Angin, E. Altintig, T.E. Kose, Bioresour. Technol. 148, 542 (2013)

    CAS  PubMed  Google Scholar 

  52. D. Liu, R. Su, Z. Hao, X. Zhao, B. Jia, L. Dong, Processes 7, 338 (2019)

    CAS  Google Scholar 

  53. P. Liu, L. Wang, Y. Zhou, T. Pan, X. Lu, D. Zhang, Fuel 164, 110 (2016)

    Google Scholar 

  54. C.H. Chia, B. Gong, S.D. Joseph, C.E. Marjo, P. Munroe, A.M. Rich, Vib. Spectrosc. 62, 248 (2012)

    CAS  Google Scholar 

  55. S. Taherymoosavi, S. Joseph, P. Munroe, J. Anal. Appl. Pyrolysis 120, 441 (2016)

    CAS  Google Scholar 

  56. K. Wang, N. Zhao, S. Lei, R. Yan, X. Tian, J. Wang, Y. Song, D. Xu, Q. Guo, L. Liu, Electrochim. Acta 166, 1 (2015)

    CAS  Google Scholar 

  57. O. Oginni, K. Singh, G. Oporto, B. Dawson-Andoh, L. McDonald, E. Sabolsky, Bioresour. Technol. Rep. 7, 100266 (2019)

    Google Scholar 

  58. P. Wang, Environ. Sci. Nano 5, 1078 (2018)

    CAS  Google Scholar 

  59. O. Pezoti Junior, A.L. Cazetta, R.C. Gomes, É.O. Barizão, I.P.A.F. Souza, A.C. Martins, T. Asefa, V.C. Almeida, J. Anal. Appl. Pyrolysis 105, 166 (2014)

    Google Scholar 

  60. P.M.K. Reddy, P. Verma, C. Subrahmanyam, J. Taiwan Inst. Chem. Eng. 58, 500 (2016)

    CAS  Google Scholar 

  61. M.A. Islam, S. Sabar, A. Benhouria, W.A. Khanday, M. Asif, B.H. Hameed, J. Taiwan Inst. Chem. 74, 96 (2017)

    CAS  Google Scholar 

  62. H. Laksaci, A. Khelifi, B. Belhamdi, M. Trari, J. Environ. Chem. Eng. 5, 5061 (2017)

    CAS  Google Scholar 

  63. D. Tian, Z. Xu, D. Zhang, W. Chen, J. Cai, H. Deng, Z. Sun, Y. Zhou, J. Solid State Chem. 269, 580 (2019)

    CAS  Google Scholar 

  64. J. Yang, K. Qiu, Chem. Eng. J. 165, 209 (2010)

    CAS  Google Scholar 

  65. P. Gao, Z.H. Liu, G. Xue, B. Han, M.H. Zhou, Bioresour. Technol. 102, 3645 (2011)

    CAS  PubMed  Google Scholar 

  66. L. Zhu, M. Gao, C.K.N. Peh, G.W. Ho, Nano Energy 57, 507 (2019)

    CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by National Natural Science Foundation of China (51909292), Key projects supported by Tianjin key research and development plan (18YFZCSF00310), and Fundamental Research Funds for Central Public Welfare Scientific Research Institution (K-JBYWF-2019-ZT02, Y-JBYWF-2019-16).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuhui Ma.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, Y., Song, D. & Cao, J. Preparation of activated carbon monolith from waste corrugated cardboard box via catalytic pyrolysis and gasification under CO2 atmosphere for adsorption and solar steam generation. J Porous Mater 27, 1711–1726 (2020). https://doi.org/10.1007/s10934-020-00950-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-020-00950-9

Keywords

Navigation