Skip to main content
Log in

Automatic Controller Code Generation for Swarm Robotics Using Probabilistic Timed Supervisory Control Theory (ptSCT)

  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

The development of flexible swarm robotics systems capable of adapting to the task and environmental changes is a serious challenge. The main motivations of Swarm robotics are decentralized control, stability, adaptivity, and flexibility. Usually, ad-hoc approaches are employed to design a controller capable of meeting the problem specifications. However, these methods cannot be easily verified, and in some cases, it is not even shown that they meet the specifications. Moreover, the controller source code has to be developed separately, primarily when formal methods are employed; As a result, it cannot be guaranteed that the implementation matches the design. This paper proposes a new method - probabilistic timed supervisory control (ptSCT) - to formally design a controller from systems specifications. The proposed ptSCT has several advantages: 1) the automatic generation of the controller source code utilizable in ARGoS platform, 2) formal designing capability using the implemented software tool, 3) set of powerful design components like probabilistic decisions and time constraints, and 4) the reusability of formally designed modules among different scenarios and multiple robotic platforms. Two case studies are considered to investigate various aspects of the proposed system. Firstly, the synchronization case study is implemented for a comparison between SCT and ptSCT in terms of design capabilities and memory consumption. Secondly, the foraging case study as a complex and medium-sized problem is modeled using ptSCT step by step. More than 2400 experiments with a varying number of obstacles, targets, and robots are executed in ARGoS platform in order to show the performance of the automatically generated source code.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Abdelwahed, S., Wonham, W.M.: Blocking detection in discrete event systems. In: Proceeding of the American control conference, pp. 1673–1678, 2003. ISBN 0-7803-7896-2. https://doi.org/10.1051/apido

  2. Barca, J.C., Sekercioglu, Y.A.: Swarm robotics reviewed. Robotica 31(3), 345–359 (2013). ISSN 02635747. https://doi.org/10.1017/S026357471200032X

    Article  Google Scholar 

  3. Bonani, M., Longchamp, V., Magnenat, S., Rétornaz, P., Burnier, D., Roulet, G., Vaussard, F., Bleuler, H., Mondada, F.: The marXbot, a miniature mobile robot opening new perspectives for the collective-robotic research. In: Proceedings of IEEE/RSJ international conference on intelligent robots and systems, pp. 4187–4193. ISBN 9781424466757. https://doi.org/10.1109/IROS.2010.5649153 (2010)

  4. Brambilla, M., Ferrante, E., Birattari, M., Dorigo, M.: Swarm robotics : A review from the swarm engineering perspective. Swarm Intell. 7(1), 1–41 (2013). ISSN 1935-3812. https://doi.org/10.1007/s11721-012-0075-2

    Article  Google Scholar 

  5. Brambilla, M., Dorigo, M., Birattari, M.: Property-driven design for robot swarms : A design method based on prescriptive modeling and model checking. ACM Trans. Aut. Adap. Syst. 9(4), 17 (2015)

    Google Scholar 

  6. Brandin, B.A., Wonham, W.M.: The supervisory control of timed DES. IEEE Trans. Autom. Control 39(2), 329–342 (1994)

    Article  Google Scholar 

  7. Cassandras, C.G., Lafortune, S.: Introduction to Discrete Event Systems. Springer Science & Business Media (2009)

  8. Castello, E., Yamamoto, T., Libera, F.D., Liu, W., Winfield, A.F.T., Nakamura, Y., Ishiguro, H.: Adaptive foraging for simulated and real robotic swarms: The dynamical response threshold approach. Swarm Intell. 10(1), 1–31 (2016). ISSN 19353820

    Article  Google Scholar 

  9. Chomsky, N.: Three models for the description of language. IRE Trans. Inf Theory 2(3), 113–124 (1956)

    Article  Google Scholar 

  10. Chomsky, N.: On certain formal properties of grammars. Inf. Control 2(2), 137–167 (1959)

    Article  MathSciNet  Google Scholar 

  11. Costelha, H., Lima, P.: Modelling, analysis and execution of multi-robot tasks using petri nets. In: Proceedings of the 7th international joint conference on Autonomous agents and multiagent systems, vol. 3, pp. 1187–1190 (2008)

  12. de Queiroz, M.H., Cury, J.E.R.: Synthesis and implementation of local modular supervisory control for a manufacturing cell. In: 6th international workshop on discrete event systems, pp. 377–382 (2002)

  13. Dixon, C., Winfield, A., Fisher, M.: Towards temporal verification of emergent behaviours in swarm robotic systems. In: Towards autonomous robotic systems, pp. 336–347 (2011)

  14. Emerson, E.A.: Temporal and modal logic. Formal Models and Semantics, pp. 995–1072. ISSN 01635719. https://doi.org/10.1145/181911.181920 (1990)

  15. Fabian, M., Hellgren, A.: PLC-based implementation of supervisory control for discrete event systems. 37th IEEE conference on decision and control, 3:3305–3310. https://doi.org/10.1109/CDC.1998.758209 (1998)

  16. Forschelen, S.T.J., van de Mortel-Fronczak, J.M., Su, R., Rooda, J.E.: Application of supervisory control theory to theme park vehicles. Dis. Event Dyn. Syst. 22(4), 511–540 (2012)

    Article  MathSciNet  Google Scholar 

  17. Francesca, G., Brambilla, M., Brutschy, A., Trianni, V., Birattari, M.: AutoMoDe: A novel approach to the automatic design of control software for robot swarms. Swarm Intell. 8(2), 89–112 (2014). ISSN 19353820. https://doi.org/10.1007/s11721-014-0092-4

    Article  Google Scholar 

  18. Garattoni, L., Francesca, G., Brutschy, A., Pinciroli, C., Birattari, M.: Software Infrastructure for E-puck (and TAM). Technical Report TR/IRIDIA/2015-004.s Universitė Libre de Bruxelles (2015)

  19. Hecker, J.P., Moses, M.E.: Beyond pheromones: Evolving error-tolerant, flexible, and scalable ant-inspired robot swarms. Swarm Intell. 9(1), 43–70 (2015). ISSN 19353820. https://doi.org/10.1007/11721-015-0104-z

    Google Scholar 

  20. King, J., Pretty, R.K., Gosine, R.G.: Coordinated execution of tasks in a multiagent environment. IEEE Trans. Syst Man Cybern-Part A Syst Humans 33(5), 615–619 (2003)

    Article  Google Scholar 

  21. Konur, S., Dixon, C., Fisher, M.: Analysing robot swarm behaviour via probabilistic model checking. Robot. Auto. Syst. 6(2), 199–213 (2012). ISSN 09218890. https://doi.org/10.1016/j.robot.2011.10.005

    Article  Google Scholar 

  22. Lima, D.A., Oliveira, G.M.B.: A cellular automata ant memory model of foraging in a swarm of robots. Appl. Math. Model. 47, 551–572 (2017). ISSN 0307904X. https://doi.org/10.1016/j.apm.2017.03.021

    Article  MathSciNet  Google Scholar 

  23. Liu, J., Darabi, H.: Ladder logic implementation of Ramadge-Wonham supervisory controller. In: Proceedings of 6th international workshop on discrete event systems, pp. 383–389 (2002)

  24. Liu, W., Winfield, A.F.T.: Modeling and optimization of adaptive foraging in swarm robotic systems. Int. J. Robot. Res. 29(14), 1743–1760 (2010). ISSN 0278-3649. https://doi.org/10.1177/0278364910375139

    Article  Google Scholar 

  25. Liu, W., Winfield, A.F.T, Sa, J.: Modelling Swarm Robotic Systems: A Case Study in Collective Foraging. In: Towards autonomous robotic systems, pp. 25–32 (2007)

  26. Panait, L., Luke, S.: Cooperative muli-agent learning: The state of the art. Aut. Agents Multi-Agent Syst. 11, 387–434 (2005). ISSN 13872532. https://doi.org/10.1007/s10458-005-2631-2. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.307.6671&rep=rep1&type=pdf

    Article  Google Scholar 

  27. Lopes, Y.K., Trenkwalder, S.M., Leal, A.B., Dodd, T.J., Groß, R.: Supervisory control theory applied to swarm robotics. Swarm Intell. 10(1), 65–97 (2016). ISSN 19353820. https://doi.org/10.1007/s11721-016-0119-0

    Article  Google Scholar 

  28. Lopes, Y.K., Trenkwalder, S.M., Leal, A.B., Dodd, T.J., Groß, R.: Probabilistic supervisory control theory (pSCT) applied to swarm robotics. In: Proceedings of the 16th conference on autonomous agents and multiagent systems, pp 1395–1403. https://doi.org/10.1007/s11721-016-0119-0 (2017)

  29. Lu, Q., Hecker, J.P., Moses, M.E.: The MPFA: A multiple-place foraging algorithm for biologically-inspired robot swarms. In: IEEE/RSJ international conference on intelligent robots and systems, pp 3815–3821. ISBN 9781509037629. https://doi.org/10.1109/IROS.2016.7759561 (2016)

  30. Lu, Q., Hecker, J.P., Moses, M.E.: Multiple-place swarm foraging with dynamic depots. Autonomous Robots, pages 1–18. ISSN 15737527. https://doi.org/10.1007/s10514-017-9693-2 (2018)

  31. Massink, M., Brambilla, M., Latella, D., Dorigo, M., Birattari, M.: On the use of Bio-PEPA for modelling and analysing collective behaviours in swarm robotics, vol. 7. ISSN 1935-3812 (2013)

  32. Mondada, F., Bonani, M., Raemy, X., Pugh, J., Cianci, C., Klaptocz, A., Zufferey, J.-C., Floreano, D., Martinoli, A.: The e-puck, a robot designed for education in engineering. In: Proceedings of the 9th conference on autonomous robot systems and competitions, volume 1, pages 59–65. ISBN 978-972-99143-8-6 (2009)

  33. O’Grady, R., Pinciroli, C., Christensen, A.L., Dorigo, M.: Supervised Group Size Regulation in a Heterogeneous Robotic Swarm. In: 9th Conference on Mobile Robots and Competitions, pp. 113–120. ISBN 978-972-99143-8-6. https://doi.org/10.1051/apido (2009)

  34. Pantelic, V., Postma, S.M., Lawford, M.: Supervisory control of probabilistic discrete event systems. IEEE Trans. Autom. Control 54(8), 2013–2018 (2009)

    Article  MathSciNet  Google Scholar 

  35. Pinciroli, C., Trianni, V., O’Grady, R., Pini, G., Brutschy, A., Brambilla, M., Mathews, N., Ferrante, E., Di Caro, G., Ducatelle, F., Birattari, M., Gambardella, L.M., Dorigo, M.: ARGoS: A modular, parallel, multi-engine simulator for multi-robot systems, vol. 6. ISSN 19353812. https://doi.org/10.1007/s11721-012-0072-5 (2012)

  36. Ramadge, P.J., Murray Wonham, W.: Supervisory control of a class of discrete event processes. SIAM J. Control Optim. 25(1), 206–230 (1987)

    Article  MathSciNet  Google Scholar 

  37. Ramadge, P.J.G., Wonham, W.M.: The control of discrete event systems. In: Proceedings of the IEEE, vol. 77 of 1, pp. 81–98. ISBN 0018-9219 VO - 77. https://doi.org/10.1109/5.21072 (1989)

  38. Riedmiller, M., Gabel, T., Hafner, R., Lange, S.: Reinforcement learning for robot soccer. Aut. Robot. 27(1), 55–73 (2009). ISSN 09295593. https://doi.org/10.1007/s10514-009-9120-4

    Article  Google Scholar 

  39. Sakthivelmurugan, E., Senthilkumar, G., Prithiviraj, K.G., Tinu Devraj, K R.: Foraging behavior analysis of swarm robotics system. In: MATEC web of conferences, vol. 144, pp. 01013. EDP Sciences. https://doi.org/10.1051/matecconf/201714401013 (2018)

  40. Silva, D.B., Santos, E.A.P., Vieira, A.D., de Paula, M.A.B.: Application of the supervisory control theory in the project of a robot-centered, variable routed system controller. In: IEEE international conference on emerging technologies and factory automation, pp. 751–758 (2008)

  41. Soysal, O., Bahçeci, E., Şahin, E.: Aggregation in swarm robotic systems: Evolution and probabilistic control Onur. Turkish J. Elect. Eng. Comput. Sci. 15(2), 199–225 (2007)

    Google Scholar 

  42. Tanner, H.G., Jadbabaie, A., Pappas, G.J.: Flocking in Fixed and Switching Networks Flocking in Fixed and Switching Networks. IEEE Trans. Auto. Control 52(5), 863–868 (2007). ISSN 0018-9286. https://doi.org/10.1109/TAC.2007.895948

    Article  Google Scholar 

  43. Tsalatsanis, A., Yalcin, A., Valavanis, K.P.: Optimized task allocation in cooperative robot teams. In 17th mediterranean conference on control and automation, pp. 270–275 (2009)

  44. Tsalatsanis, A., Yalcin, A., Valavanis, K.P.: Dynamic task allocation in cooperative robot teams. Robotica 5(2012), 721–730 (2012)

    Article  Google Scholar 

  45. Winfield, A.F.T., Liu, W., Nembrini, J., Martinoli, A.: Modelling a wireless connected swarm of mobile robot. Swarm Intell. 2(2-4), 241–266 (2008). ISSN 19353812. https://doi.org/10.1007/s11721-008-0018-0

    Article  Google Scholar 

  46. Winfield, A.F.T., Sa, J., Fernȧndez-Gago, M.-C., Dixon, C., Fisher, M.: On formal specification of emergent behaviours in swarm robotic systems. Int. J. Adv. Robot. Syst. 2(4), 39 (2005)

    Article  Google Scholar 

  47. Wonham, W.M., Ramadge, P.J.: Modular supervisory control of discrete-event systems. Math. Control, Signals Syst. 1(1), 13–30 (1988). ISSN 09324194. https://doi.org/10.1007/BF02551233

    Article  MathSciNet  Google Scholar 

  48. Wonham, W., Cai, K.: Supervisory control of discrete-event systems v, vol. 20170901. Technical report, University of Toronto, Osaka City University (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Faezeh Mirzaei.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mirzaei, F., Pouyan, A.A. & Biglari, M. Automatic Controller Code Generation for Swarm Robotics Using Probabilistic Timed Supervisory Control Theory (ptSCT). J Intell Robot Syst 100, 729–750 (2020). https://doi.org/10.1007/s10846-020-01201-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10846-020-01201-4

Keywords

Navigation