Skip to main content
Log in

A Novel Surface Treatment Technique for Titanium Alloys

  • Surface Engineering: Applications for Advanced Manufacturing
  • Published:
JOM Aims and scope Submit manuscript

Abstract

A novel packed-powder diffusion coating (PPDC) technique for pure Ti and Ti alloys was developed to improve their oxidization resistance and wear resistance. The treatment led to the formation of a controllable Al3Ti intermetallic-based composite coating, of which the thickness varied from 100 µm to 1295 µm depending on the treatment temperature and time. Cyclic oxidization tests in a static air within the temperature range from 800°C to 1000°C for 24 cycles indicated that the PPDC treatment significantly increased the oxidization resistance of Ti alloys, which enabled this type of light alloy to be comparable with some Ni-based superalloys. Furthermore, the PPDC-treated Ti alloys also showed a reduced friction coefficient and increased wear resistance compared with the substrates. Hence, it is reasonable to consider that, after the PPDC treatment, the lightweight Ti alloys had strong potential to partially replace Ni-based superalloys for high-temperature applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. R. Boyer, G. Welsch, and E.W. Collings, Materials Properties Handbook: Titanium Alloys, 1st ed. (Materials Park: ASM International, 1994), pp. 1–2.

    Google Scholar 

  2. P. Bania, JOM 40, 20 (1988).

    Article  Google Scholar 

  3. G. Biallas, M. Essert, and H.J. Maier, Int. J. Fatigue 27, 1485 (2005).

    Article  Google Scholar 

  4. P. Bartolotta, J. Barrett, T. Kelly, and R. Smashey, JOM 49, 48 (1997).

    Article  Google Scholar 

  5. B.P. Bewlay, S. Nag, A. Suzuki, and M.J. Weimer, Mater. High Temp. 33, 549 (2016).

    Article  Google Scholar 

  6. Z.-H. Sun, Y.-H. Liu, X.-Y. Zhang, Z.-H. Tang, and M.-H. Liu, Corros. Protect. 26, 493 (2005).

    Google Scholar 

  7. Y.S. Tian, C.Z. Chen, D.Y. Wang, and T.Q. Lei, Surf. Rev. Letters 12, 123 (2005).

    Article  Google Scholar 

  8. L.-C. Zhang, L.-Y. Chen, and L. Wang, Adv. Eng. Mater., 21, 1 (2019), Article number 1801215.

  9. Y.-Z. Xing, G. Wang, Y. Zhang, Y.-N. Chen, and M. Dargusch, Int. J. Adv. Manuf. Technol. 92, 1901 (2017).

    Article  Google Scholar 

  10. Z.-M. Wanga, Y.-F. Jia, X.-C. Zhang, Y. Fu, C.-C. Zhang, and S.-T. Tu, Crit. Rev. Solid State 44, 445 (2019).

    Article  Google Scholar 

  11. D. Nolan, S. Huang, V. Leskovsek, and S. Braun, Surf. Coat. Technol. 200, 5698 (2006).

    Article  Google Scholar 

  12. B. Elsener, A. Rota, and H.B. Hni, Impedance Study on the Corrosion of PVD and CVD Titanium Nitride Coatings (Stafa-Zurich: Trans Tech Publ, 1991).

    Book  Google Scholar 

  13. B. Tang, P.Q. Wu, X.Y. Li, A.L. Fan, Z. Xu, and J.P. Celis, Surf. Coat. Technol. 179, 333 (2004).

    Article  Google Scholar 

  14. J.R. Sobiecki and T. Wierzchoń, Surf. Coat. Technol. 200, 4363 (2006).

    Article  Google Scholar 

  15. Q. Wang, P.Z. Zhang, D.B. Wei, X.H. Chen, R.N. Wang, H.Y. Wang, and K.T. Feng, Mater. Des. 52, 265 (2013).

    Article  Google Scholar 

  16. D. Utu, G. Marginean, C. Pogan, W. Brandl, and V.A. Serban, Surf. Coat. Technol. 201, 6387 (2007).

    Article  Google Scholar 

  17. J.S. Selvan, K. Subramanian, and A.K. Nath, Mater. Manuf. Process 14, 285 (1999).

    Article  Google Scholar 

  18. F. Borgioli, E. Galvanetto, A. Fossati, and G. Pradelli, Surf. Coat. Technol. 184, 255 (2004).

    Article  Google Scholar 

  19. D.K. Das and S.P. Trivedi, Mater. Sci. Eng., A 367, 225 (2004).

    Article  Google Scholar 

  20. D.K. Das and Z. Alam, Surf. Coat. Technol. 201, 3406 (2006).

    Article  Google Scholar 

  21. M. Qian, W. Xu, M. Brandt, and H.P. Tang, MRS Bull. 41, 775 (2016).

    Article  Google Scholar 

  22. M.A. Harper and R.A. Rapp, Oxid. Metal 42, 303 (1994).

    Article  Google Scholar 

  23. S.M. Jiang, C.Z. Xu, H.Q. Li, S.C. Liu, J. Gong, and C. Sun, Corros. Sci. 52, 435 (2010).

    Article  Google Scholar 

  24. M. Zhang, K. Reilly, and P. Kelly, J. Mater. Res. 14, 3271 (1999).

    Article  Google Scholar 

  25. J. Hirmke, M.-X. Zhang, and D.H. StJohn, Surf. Coat. Technol. 206, 425 (2011).

    Article  Google Scholar 

  26. J. Hirmke, M.-X. Zhang, and D.H. StJohn, Metall. Mater. Trans. A 43A, 1621 (2012).

    Article  Google Scholar 

  27. H.-W. Chang, P.M. Kelly, Y.-N. Shi, and M.-X. Zhang, Mater. Sci. Eng., A 530, 304 (2011).

    Article  Google Scholar 

  28. J. Qu and J.J. Truhan, Wear 261, 848 (2006).

    Article  Google Scholar 

  29. P.G. Nash, V. Vejins, and W.W. Liang, Bull. Alloy Phase Diagr. 3, 367 (1982).

    Article  Google Scholar 

  30. T.S. Sidhu, A. Malik, S. Prakash, and R.D. Agrawal, Int. J. Phys. Sci. 1, 27 (2006).

    Google Scholar 

  31. H. Singh, D. Puri, S. Prakash, and R. Maiti, Mater. Sci. Eng., A 464, 110 (2007).

    Article  Google Scholar 

  32. I. Gurrappa, Oxid. Metal 56, 73 (2001).

    Article  Google Scholar 

  33. Y. Shida and H. Anada, Mater. Trans. 35, 623 (1994).

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Australian Research Council (ARC) Discovery Project program (DP0451964) for the funding support. On behalf of all authors, the corresponding author states that there is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming-Xing Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, MX., Miao, SM. & Shi, YN. A Novel Surface Treatment Technique for Titanium Alloys. JOM 72, 4583–4593 (2020). https://doi.org/10.1007/s11837-020-04393-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-020-04393-0

Navigation