Skip to main content
Log in

Enhancement of needle visualization and localization in ultrasound

  • Review Article
  • Published:
International Journal of Computer Assisted Radiology and Surgery Aims and scope Submit manuscript

A Correction to this article was published on 11 January 2021

This article has been updated

Abstract

Purpose

This scoping review covers needle visualization and localization techniques in ultrasound, where localization-based approaches mostly aim to compute the needle shaft (and tip) location while potentially enhancing its visibility too.

Methods

A literature review is conducted on the state-of-the-art techniques, which could be divided into five categories: (1) signal and image processing-based techniques to augment the needle, (2) modifications to the needle and insertion to help with needle-transducer alignment and visibility, (3) changes to ultrasound image formation, (4) motion-based analysis and (5) machine learning.

Results

Advantages, limitations and challenges of representative examples in each of the categories are discussed. Evaluation techniques performed in ex vivo, phantom and in vivo studies are discussed and summarized.

Conclusion

Greatest limitation of the majority of the literature is that they rely on original visibility of the needle in the static image. Need for additional/improved apparatus is the greatest limitation toward clinical utility in practice.

Significance

Ultrasound-guided needle placement is performed in many clinical applications, including biopsies, treatment injections and anesthesia. Despite the wide range and long history of this technique, an ongoing challenge is needle visibility in ultrasound. A robust technique to enhance ultrasonic needle visibility, especially for steeply inserted hand-held needles, and while maintaining clinical utility requirements is needed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Change history

References

  1. Scholten HJ, Pourtaherian A, Mihajlovic N, Korsten HHM, Bouwman RA (2017) Improving needle tip identification during ultrasound-guided procedures in anaesthetic practice. Anaesthesia 72(7):889–904

    Article  CAS  PubMed  Google Scholar 

  2. Matalon TA, Silver B (1990) US guidance of interventional procedures. Radiology 174(1):43–47

    Article  CAS  PubMed  Google Scholar 

  3. Holm HH, Skjoldbye B (1996) Interventional ultrasound. Ultrasound Med Biol 22(7):773–789

    Article  CAS  PubMed  Google Scholar 

  4. Stone J, Beigi P, Rohling R, Lessoway VA, Dube A, Gunka V (2016) Novel 3D ultrasound system for midline single-operator epidurals: a feasibility study on a porcine model. Int J Obstet Anesth 31:51–56

    Article  Google Scholar 

  5. Chin KJ, Perlas A, Chan VWS, Brull R (2008) Needle visualization in ultrasound-guided regional anesthesia: challenges and solutions

  6. Hopkins RE, Bradley M (2001) In-vitro visualization of biopsy needles with ultrasound: a comparative study of standard and echogenic needles using an ultrasound phantom. Clin Radiol 56(6):499–502

    Article  CAS  PubMed  Google Scholar 

  7. Stone MB, Moon C, Sutijono D, Blaivas M (2010) Needle tip visualization during ultrasound-guided vascular access: short-axis vs long-axis approach. Am J Emerg Med 28(3):343–347

    Article  PubMed  Google Scholar 

  8. Van De Berg NJ, Sánchez-Margallo JA, Van Dijke AP, Langø T, Van Den Dobbelsteen JJ (2019) A methodical quantification of needle visibility and echogenicity in ultrasound images. Ultrasound Med Biol 45(4):998–1009

    Article  PubMed  Google Scholar 

  9. Qiu W, Yuchi M, Ding M, Tessier D, Fenster A (2013) Needle segmentation using 3D Hough transform in 3D TRUS guided prostate transperineal therapy. Med Phys 40(4):042902

    Article  PubMed  Google Scholar 

  10. Mung J, Vignon F, Jain A (2011) A non-disruptive technology for robust 3D tool tracking for ultrasound-guided interventions, pp 153–60

  11. Ayvali E, Desai JP (2015) Optical flow-based tracking of needles and needle-tip localization using circular hough transform in ultrasound images. Ann Biomed Eng 43(8):1828–1840

    Article  PubMed  Google Scholar 

  12. Okazawa SH, Ebrahimi R, Chuang J, Rohling RN, Salcudean SE (2006) Methods for segmenting curved needles in ultrasound images. Med Image Anal 10(3 SPEC. ISS.):330–342

    Article  PubMed  Google Scholar 

  13. Ayvaci A, Yan P, Xu S, Soatto S, Kruecker J (2011) Biopsy needle detection in transrectal ultrasound. Comput Med Imaging Graph 35(7–8):653–659

    Article  PubMed  Google Scholar 

  14. Draper KJ, Blake CC, Gowman L, Downey DB, Fenster A (2000) An algorithm for automatic needle localization in ultrasound-guided breast biopsies. J Med Phys 27(8):1971–1979

    Article  CAS  Google Scholar 

  15. Tsui BC (2007) Facilitating needle alignment in-plane to an ultrasound beam using a portable laser unit. Reg Anesth Pain Med 32(1):84–88

    Article  PubMed  Google Scholar 

  16. Perrella RR, Kimme-Smith C, Tessler FN, Ragavendra N, Grant EG (1992) A new electronically enhanced biopsy system: value in improving needle-tip visibility during sonographically guided interventional procedures. Am J Roentgenol 158(1):195–198

    Article  CAS  Google Scholar 

  17. Chan C, Lam F, Rohling R (2005) A needle tracking device for ultrasound guided percutaneous procedures. Ultrasound Med Biol 31(11):1469–1483

    Article  PubMed  Google Scholar 

  18. Xia W, Mari JM, West SJ, Ginsberg Y, David AL, Ourselin S, Desjardins AE (2015) In-plane ultrasonic needle tracking using a fiber-optic hydrophone. Med Phys 42(10):5983–5991

    Article  PubMed  Google Scholar 

  19. Hakime A, Deschamps F, De Carvalho EGM, Barah A, Auperin A, De Baere T (2012) Electromagnetic-tracked biopsy under ultrasound guidance: preliminary results. Cardiovasc Interv Radiol 35(4):898–905

    Article  Google Scholar 

  20. Bluvol N, Shaikh A, Kornecki A, Del Rey Fernandez D, Downey D, Fenster A (2008) A needle guidance system for biopsy and therapy using two-dimensional ultrasound. Med Phys 32(2):617–628

    Article  Google Scholar 

  21. Bax J, Smith D, Bartha L, Montreuil J, Sherebrin S, Gardi L, Edirisinghe C, Fenster A (2011) A compact mechatronic system for 3d ultrasound guided prostate interventions. Med Phys 32(2):1055–1069

    Article  Google Scholar 

  22. Schicho K, Figl M, Donat M, Birkfellner W, Seemann R, Wagner A, Bergmann H, Ewers R (2005) Stability of miniature electromagnetic tracking systems. Phys Med Biol 32(9):2089–2098

    Article  Google Scholar 

  23. Cheung S, Rohling R (2004) Enhancement of needle visibility in ultrasound-guided percutaneous procedures. Ultrasound Med Biol 30(5):617–624

    Article  PubMed  Google Scholar 

  24. Hatt CR, Ng G, Parthasarathy V (2015) Enhanced needle localization in ultrasound using beam steering and learning-based segmentation. Comput Med Imaging Graph 41:46–54

    Article  PubMed  Google Scholar 

  25. Harmat A, Rohling RN, Salcudean SE (2006) Needle tip localization using stylet vibration. Ultrasound Med Biol 32(9):1339–1348

    Article  PubMed  Google Scholar 

  26. Armstrong G, Cardon L, Vilkomerson D, Lipson D, Wong J, Rodriguez LL, Thomas JD, Griffin BP (2001) Localization of needle tip with color doppler during pericardiocentesis: in vitro validation and initial clinical application. J Am Soc Echocardiogr 14(1):29–37

    Article  CAS  PubMed  Google Scholar 

  27. Kurohiji T, Sigel B, Justin J, Machi J (1990) Motion marking in color doppler ultrasound needle and catheter visualization. J Ultrasound Med 9(4):243–245

    Article  CAS  PubMed  Google Scholar 

  28. Pourtaherian A, Ghazvinian Zanjani F, Zinger S, Mihajlovic N, Ng G, Korsten H, de With P (2017) Improving needle detection in 3d ultrasound using orthogonal-plane convolutional networks. In: Medical image computing and computer-assisted intervention MICCAI. Springer, pp 610–618

  29. Beigi P, Rohling R, Salcudean T, Lessoway VA, Ng GC (2017) Detection of an invisible needle in ultrasound using a probabilistic SVM and time-domain features. J Ultrason 78:18–22

    Article  Google Scholar 

  30. Beigi P, Rohling R, Salcudean SE, Ng GC (2017) CASPER: computer-aided segmentation of imperceptible motion – a learning-based tracking of an invisible needle in ultrasound. Int J Comput Assist Radiol Surg . 1–10

  31. Arif M, Moelker A, Van Walsum T (2019) Automatic needle detection and real-time bi-planar needle visualization during 3d ultrasound scanning of the liver. Med Image Anal 53:104–110

    Article  PubMed  Google Scholar 

  32. Lee JY, Islam M, Woh JR, Washeem TM, Ngoh LYC, Wong WK, Ren H (2020) Ultrasound needle segmentation and trajectory prediction using excitation network. Int J Comput Assist Radiol Surg 15(3):437–443

    Article  PubMed  Google Scholar 

  33. Mwikirize C, Nosher JL, Hacihaliloglu I (2019) Learning needle tip localization from digital subtraction in 2d ultrasound. Int J Comput Assist Radiol Surg 14(6):1017–1026

    Article  PubMed  Google Scholar 

  34. Ding M, Fenster A (2004) Projection-based needle segmentation in 3D ultrasound images. Comput Aided Surg Int Soc Comput Aided Surg 9(5):193–201

    Google Scholar 

  35. Wu Q, Yuchi M, Ding M (2014) Phase grouping-based needle segmentation in 3D trans-rectal ultrasound-guided prostate trans-perineal therapy. Ultrasound Med Biol 40(4):804–816

    Article  Google Scholar 

  36. Menhadji A, Nguyen V, Cho J, Chu R, Osann K, Bucur P, Patel P, Lusch A, McDougall E, Landman J (2013) In vitro comparison of a novel facilitated ultrasound targeting technology vs standard technique for percutaneous renal biopsy. Urology 82(3):734–737

    Article  PubMed  Google Scholar 

  37. Brookes J, Sondekoppam R, Armstrong K, Uppal V, Dhir S, Terlecki M, Ganapathy S (2015) Comparative evaluation of the visibility and block characteristics of a stimulating needle and catheter vs an echogenic needle and catheter for sciatic nerve block with a low-frequency ultrasound probe. Br J Anaesth 115(6):912–919

    Article  CAS  PubMed  Google Scholar 

  38. Beigi P, Rohling R, Salcudean T, Lessoway VA, Ng GC (2015) Needle trajectory and tip localization in real-time 3D ultrasound using a moving stylus. Ultrasound Med Biol 41(7):2057–2070

    Article  PubMed  Google Scholar 

  39. Beigi P, Salcudean T, Rohling RN, Ng GC (2016) Spectral analysis of the tremor motion for needle detection in curvilinear ultrasound via spatio-temporal linear sampling. Int J Comput Assist Radiol Surg 11(6):1183–92

    Article  PubMed  Google Scholar 

  40. Hacihaliloglu I, Beigi P, Ng G, Rohling R, Salcudean S, Abolmaesumi P (2015) Projection-based phase features for localization of a needle tip in 2D curvilinear ultrasound. In: International conference on medical image computing and computer-assisted intervention. Springer, pp 347–354

  41. Qiu W, Yuchi M, Ding M (2014) Phase grouping-based needle segmentation in 3D trans-rectal ultrasound-guided prostate trans-perineal therapy. Ultrasound Med Biol 40(4):804–816

    Article  PubMed  Google Scholar 

  42. Kim C, Chang D, Petrisor D, Chirikjian G, Han M, Stoianovici D (2013) Ultrasound probe and needle-guide calibration for robotic ultrasound scanning and needle targeting. IEEE Trans Biomed Eng 60(6):1728–1734

    Article  PubMed  Google Scholar 

  43. Tran D, Kamani A, Al-Attas E, Lessoway V, Massey S, Rohling R (2010) Single-operator real-time ultrasound guided lumbar epidural needle insertion. Can J Anesth 57(4):313–321

    Article  PubMed  Google Scholar 

  44. Zhuang B, Dickie K, Pelissier L (2013) In vivo needle visualization in ultrasound images using tensor-based filtering. In: IEEE ultrasonics symposium, pp 667–670

  45. Daoud MI, Rohling RN, Salcudean SE, Abolmaesumi P (2015) Needle detection in curvilinear ultrasound images based on the reflection pattern of circular ultrasound waves. Med Phys 42(11):6221–6233

    Article  PubMed  Google Scholar 

  46. Reed KB, Majewicz A, Kallem V, Alterovitz R, Goldberg K, Cowan NJ, Okamura AM (2011) Robot-assisted needle steering. IEEE Robot Autom Mag 18(4):35–46

    Article  PubMed  PubMed Central  Google Scholar 

  47. Majewicz A, Marra SP, van Vledder MG, Lin M, Choti MA, Song DY, Okamura AM (2012) Behavior of tip-steerable needles in ex vivo and in vivo tissue. IEEE Trans Biomed Eng 59(10):2705–2715

    Article  PubMed  PubMed Central  Google Scholar 

  48. Boctor EM, Choti MA, Burdette EC, Webster RJ (2008) Three-dimensional ultrasound-guided robotic needle placement: an experimental evaluation. Int J Med Robot Comput Assist Surg 4(2):180–91

    Article  Google Scholar 

  49. Pierre C, Alexandre K, Nassir N (2015) 3D ultrasound-guided robotic steering of a flexible needle via visual servoing. In: IEEE international conference on robotics and automation, ICRA’15

  50. Hastenteufel M, Vetter M, Meinzer HP, Wolf I (2006) Effect of 3d ultrasound probes on the accuracy of electromagnetic tracking systems. Ultrasound Med Biol 32(9):1359–1368

    Article  PubMed  Google Scholar 

  51. Reading CC, Charboneau JW, Felmlee JP, James EM (1987) US-guided percutaneous biopsy: use of a screw biopsy stylet to aid needle detection. Radiology 163(1):280–281

    Article  CAS  PubMed  Google Scholar 

  52. Chiang HK, Zhou Q, Mandell MS, Tsou MY, Lin SP, Shung KK, Ting CK (2011) Eyes in the needle novel epidural needle with embedded high-frequency ultrasound transducer-epidural access in porcine model. J Am Soc Anesthesiol 114(6):1320–1324

    Article  Google Scholar 

  53. Fronheiser MP, Idriss SF, Wolf PD, Smith SW (2008) Vibrating interventional device detection using real-time 3-D color doppler. IEEE Trans Ultrasonics Ferroelectr Freq Control 55(6):1355–1362

    Article  Google Scholar 

  54. Hong J, Dohi T, Hashizume M, Konishi K, Hata N (2004) An ultrasound-driven needle-insertion robot for percutaneous cholecystostomy. Phys Med Biol 49(3):441

    Article  CAS  PubMed  Google Scholar 

  55. Poggio T, Cauwenberghs G (2001) Incremental and decremental support vector machine learning. Adv Neural Inf Process Syst 13:409

    Google Scholar 

  56. French D, Morris J, Keyes M, Goksel O, Salcudean S (2005) Computing intraoperative dosimetry for prostate brachytherapy using trus and fluoroscopy. Acad Radiol 12(10):1262–1272

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work is jointly funded by the Natural Sciences and Engineering Research Council of Canada (NSERC) and the Canadian Institutes of Health Research (CIHR). Thanks are due to Philips Ultrasound for supplying the ultrasound machine and research interface.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Parmida Beigi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All applicable international, national and/or institutional guidelines for the care and use of animals were followed.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original online version of this article was revised: The presentation of Table 1 was incorrect. The cell of "Steerable/Robot-assisted needles" should shift one column to the right.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Beigi, P., Salcudean, S.E., Ng, G.C. et al. Enhancement of needle visualization and localization in ultrasound. Int J CARS 16, 169–178 (2021). https://doi.org/10.1007/s11548-020-02227-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11548-020-02227-7

Keywords

Navigation