Skip to main content
Log in

Light-switchable catalytic activity of Cu for oxygen reduction reaction

  • Communication
  • Published:
Frontiers of Materials Science Aims and scope Submit manuscript

Abstract

The surface reactivity of metals is fundamentally dependent on the local electronic structure generally tailored by atomic compositions and configurations during the synthesis. Herein, we demonstrate that Cu, which is inert for oxygen reduction reaction (ORR) due to the fully occupied d-orbital, could be activated by applying a visible-light irradiation at ambient temperature. The ORR current is increased to 3.3 times higher in the potential range between −0.1 and 0.4 V under the light of 400 mW·cm−2, and the activity enhancement is proportional to the light intensity. Together with the help of the first-principle calculation, the remarkably enhanced electrocatalytic activity is expected to stem mainly from the decreased metal-adsorbate binding by photoexcitation. This finding provides an additional degree of freedom for controlling and manipulating the surface reactivity of metal catalysts besides materials strategy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Seh Z W, Kibsgaard J, Dickens C F, et al. Combining theory and experiment in electrocatalysis: Insights into materials design. Science, 2017, 355(6321): eaad4998

    Article  Google Scholar 

  2. Cao F, Yang X, Shen C, et al. Electrospinning synthesis of transition metal alloy nanoparticles encapsulated in nitrogen-doped carbon layers as an advanced bifunctional oxygen electrode. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2020, 8(15): 7245–7252

    Article  CAS  Google Scholar 

  3. Löffler T, Savan A, Meyer H, et al. Design of complex solid-solution electrocatalysts by correlating configuration, adsorption energy distribution patterns, and activity curves. Angewandte Chemie International Edition, 2020, 59(14): 5844–5850

    Article  Google Scholar 

  4. Suntivich J, Gasteiger H A, Yabuuchi N, et al. Design principles for oxygen-reduction activity on perovskite oxide catalysts for fuel cells and metal-air batteries. Nature Chemistry, 2011, 3(7): 546–550

    Article  CAS  Google Scholar 

  5. Liu L, Zhang J, Ma W, et al. Co/N co-doped graphene-like nanocarbon for highly efficient oxygen reduction electrocatalyst. Science China: Materials, 2019, 62(3): 359–367

    Article  CAS  Google Scholar 

  6. Mu C, Mao J, Guo J, et al. Rational design of spinel cobalt vanadate oxide Co2VO4 for Superior Electrocatalysis. Advanced Materials, 2020, 32(10): 1907168

    Article  CAS  Google Scholar 

  7. Li Y J, Cui L, Da P F, et al. Multiscale structural engineering of Ni-doped CoO nanosheets for zinc-air batteries with high power density. Advanced Materials, 2018, 30(46): 1804653

    Article  Google Scholar 

  8. Bu L, Zhang N, Guo S, et al. Biaxially strained PtPb/Pt core/shell nanoplate boosts oxygen reduction catalysis. Science, 2016, 354(6318): 1410–1414

    Article  CAS  Google Scholar 

  9. Li M, Zhao Z, Cheng T, et al. Ultrafine jagged platinum nanowires enable ultrahigh mass activity for the oxygen reduction reaction. Science, 2016, 354(6318): 1414–1419

    Article  CAS  Google Scholar 

  10. Huang X, Zhao Z, Cao L, et al. High-performance transition metal-doped Pt3Ni octahedra for oxygen reduction reaction. Science, 2015, 348(6240): 1230–1234

    Article  CAS  Google Scholar 

  11. Escudero-Escribano M, Malacrida P, Hansen M H, et al. Tuning the activity of Pt alloy electrocatalysts by means of the lanthanide contraction. Science, 2016, 352(6281): 73–76

    Article  CAS  Google Scholar 

  12. Stamenkovic V R, Fowler B, Mun B S, et al. Improved oxygen reduction activity on Pt3Ni(1 1 1) via increased surface site availability. Science, 2007, 315(5811): 493–197

    Article  CAS  Google Scholar 

  13. Yang S, Kim J, Tak Y J, et al. Single-atom catalyst of platinum supported on titanium nitride for selective electrochemical reactions. Angewandte Chemie International Edition, 2016, 55(6): 2058–2062

    Article  CAS  Google Scholar 

  14. Liu Y, Chen H, Xu C, et al. Control of catalytic activity of nano-Au through tailoring the Fermi level of support. Small, 2019, 15(34): 1901789

    Article  Google Scholar 

  15. Faisal F, Stumm C, Bertram M, et al. Electrifying model catalysts for understanding electrocatalytic reactions in liquid electrolytes. Nature Materials, 2018, 17(7): 592–598

    Article  CAS  Google Scholar 

  16. Xu C, Wu Y, Li S, et al. Engineering the epitaxial interface of Pt-CeO2 by surface redox reaction guided nucleation for low temperature CO oxidation. Journal of Materials Science & Technology, 2020, 40: 39–46

    Article  Google Scholar 

  17. Casalongue H S, Kaya S, Viswanathan V, et al. Direct observation of the oxygenated species during oxygen reduction on a platinum fuel cell cathode. Nature Communications, 2013, 4(1): 2817

    Article  Google Scholar 

  18. Greeley J, Stephens I E L, Bondarenko A S, et al. Alloys of platinum and early transition metals as oxygen reduction electrocatalysts. Nature Chemistry, 2009, 1(7): 552–556

    Article  CAS  Google Scholar 

  19. Ruban A, Hammer B, Stoltze P, et al. Surface electronic structure and reactivity of transition and noble metals. Journal of Molecular Catalysis A: Chemical, 1997, 115(3): 421–429

    Article  CAS  Google Scholar 

  20. Hammer B, Nørskov J K. Theoretical surface science and catalysis — calculations and concepts. Advances in Catalysis, 2000, 45: 71–129

    CAS  Google Scholar 

  21. Zhou S, Miao X, Zhao X, et al. Engineering electrocatalytic activity in nanosized perovskite cobaltite through surface spinstate transition. Nature Communications, 2016, 7(1): 11510

    Article  CAS  Google Scholar 

  22. Perez-Alonso F J, McCarthy D N, Nierhoff A, et al. The effect of size on the oxygen electroreduction activity of mass-selected platinum nanoparticles. Angewandte Chemie International Edition, 2012, 51(19): 4641–4643

    Article  CAS  Google Scholar 

  23. Nørskov J K, Rossmeisl J, Logadottir A, et al. Origin of the overpotential for oxygen reduction at a fuel-cell cathode. The Journal of Physical Chemistry B, 2004, 108(46): 17886–17892

    Article  Google Scholar 

  24. Thorseth M A, Tornow C E, Tse E C M, et al. Cu complexes that catalyze the oxygen reduction reaction. Coordination Chemistry Reviews, 2013, 257(1): 130–139

    Article  CAS  Google Scholar 

  25. Du C, Gao X, Chen W. Recent developments in copper-based, non-noble metal electrocatalysts for the oxygen reduction reaction. Chinese Journal of Catalysis, 2016, 37(7): 1049–1061

    Article  CAS  Google Scholar 

  26. Li F, Li J, Feng Q, et al. Significantly enhanced oxygen reduction activity of Cu/CuNxCy co-decorated ketjenblack catalyst for Al-air batteries. Journal of Energy Chemistry, 2018, 27(2): 419–425

    Article  Google Scholar 

  27. Plowman B J, Jones L A, Bhargava S K. Building with bubbles: the formation of high surface area honeycomb-like films via hydrogen bubble templated electrodeposition. Chemical Communications, 2015, 51(21): 4331–4346

    Article  CAS  Google Scholar 

  28. Bu Y, Nam G, Kim S, et al. A tailored bifunctional electrocatalyst: boosting oxygen reduction/evolution catalysis via electron transfer between N-doped graphene and perovskite oxides. Small, 2018, 14(48): 1802767

    Article  Google Scholar 

  29. Paracchino A, Laporte V, Sivula K, et al. Highly active oxide photocathode for photoelectrochemical water reduction. Nature Materials, 2011, 10(6): 456–461

    Article  CAS  Google Scholar 

  30. Marimuthu A, Zhang J, Linic S. Tuning selectivity in propylene epoxidation by plasmon mediated photo-switching of Cu oxidation state. Science, 2013, 339(6127): 1590–1593

    Article  CAS  Google Scholar 

  31. Han S, Hong S, Yeo J, et al. Nanorecycling: monolithic integration of copper and copper oxide nanowire network electrode through selective reversible photothermochemical reduction. Advanced Materials, 2015, 27(41): 6397–6403

    Article  CAS  Google Scholar 

  32. Ye L, Zan L, Tian L, et al. The {0 0 1} facets-dependent high photoactivity of BiOCl nanosheets. Chemical Communications, 2011, 47(24): 6951–6953

    Article  CAS  Google Scholar 

  33. Cao F, Wang Y, Wang J, et al. Oxygen vacancy induced superior visible-light-driven photodegradation pollutant performance in BiOCl microflowers. New Journal of Chemistry, 2018, 42(5): 3614–3618

    Article  CAS  Google Scholar 

  34. Boerigter C, Campana R, Morabito M, et al. Evidence and implications of direct charge excitation as the dominant mechanism in plasmon-mediated photocatalysis. Nature Communications, 2016, 7(1): 10545

    Article  CAS  Google Scholar 

  35. Al Ma’Mari F, Moorsom T, Teobaldi G, et al. Beating the Stoner criterion using molecular interfaces. Nature, 2015, 524(7563): 69–73

    Article  Google Scholar 

  36. Huang B, Xiao L, Lu J, et al. Spatially resolved quantification of the surface reactivity of solid catalysts. Angewandte Chemie International Edition, 2016, 55(21): 6239–6243

    Article  CAS  Google Scholar 

  37. Soon A, Todorova M, Delley B, et al. Oxygen adsorption and stability of surface oxides on Cu(1 1 1): A first-principles investigation. Physical Review B: Condensed Matter and Materials Physics, 2006, 73(16): 165424

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 51771047) and the Fundamental Research Funds for the Central Universities (N180204014). We thank Miss Fan Yang for sample preparation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Song Li.

Additional information

Data availability statement

The data that support the findings of this study are available from the corresponding author upon reasonable request.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Yu, Y., Fu, X. et al. Light-switchable catalytic activity of Cu for oxygen reduction reaction. Front. Mater. Sci. 14, 481–487 (2020). https://doi.org/10.1007/s11706-020-0521-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11706-020-0521-9

Keywords

Navigation