Skip to main content
Log in

Passive Internalization of Bioactive β-Casein Peptides into Phospholipid (POPC) Bilayers. Free Energy Landscapes from Unbiased Equilibrium MD Simulations at μs-Time Scale

  • ORIGINAL ARTICLE
  • Published:
Food Biophysics Aims and scope Submit manuscript

Abstract

Absorption of bioactive peptides in the intestinal epithelium take place in the apical or the basolateral tight junctions of the cells. Depending on the peptide size and hydrophobicity, translocation mechanisms involve processes of passive diffusion, active transport by peptide-cotransporters such as members of the PepT family, and transcytosis by internalization vesicles. In this work, we investigated passive diffusion of bioactive peptides of 6, 17, and 30 amino acids into lipid bilayers of (POPC) phospholipid molecules. We initially selected these three peptides because such fragments are produced by partial hydrolysis of β-casein (BCN), and because of their physiological functions: BCN6 is an agonist of opioid receptors; BCN17 is an inhibitor of thrombin and angiotensin-converting enzymes, and BCN30 promotes secretion of the protective mucin barrier in the intestine. Our computational set up consisted of unbiased equilibrium molecular dynamics simulations, at the μs-time scale, using an all-atom force field. Each peptide was allowed to freely fold and unfold, as well as enter and exit the lipid bilayer, which allows determination of peptide affinity for the bilayer interface and hydrophobic core. Passive internalization of BCN6 (YPVEPF), BCN17 (YQEPVLGPVR GPFPIIV), and BCN30 (GVSKVKEAMA PKHKEMPFPK YPVEPFTESQ) displayed different dynamics at the bilayer interface: the BCN6 peptide attached and detached throughout the simulation trajectory; BCN17 and BCN30 attached irreversibly to the bilayer interface, respectively, with N- and C-terminus fragments in close contact with lipid molecules. Quenching of tyrosine fluorescence data suggest interfacial interactions of BCN6, BCN17 and BCN30 in POPC lipid bilayers, consistent with the proposed modeling set up. This approach gave valuable information of peptide insertion and folding at a lipid bilayer, allowing to explore the initial stages of the peptide adsorption at the interface, and providing a model for evaluation of amphipathic properties of potential biofunctional peptides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. D.P. Mohanty, S. Mohapatra, S. Misra, P.S. Sahu, Saudi J Biol Sci 23(5), 577–583 (2016)

    CAS  PubMed  Google Scholar 

  2. B.N.P. Sah, T. Vasiljevic, S. McKechnie, O.N. Donkor, Compr Rev Food Sci F 14(2), 123–138 (2015)

    CAS  Google Scholar 

  3. H.S. Gill, F. Doull, K.J. Rutherfurd, M.L. Cross, Br. J. Nutr. 84(S1), 111–117 (2000)

    Google Scholar 

  4. M.R.u. Haq, R. Kapila, U.K. Shandilya, S. Kapila, Int. J. Food Prop. 17(8), 1726–1741 (2014)

    Google Scholar 

  5. M. Shimizu, Biosci. Biotechnol. Biochem. 74(2), 232-241 (2010)

  6. F. Guettou, E.M. Quistgaard, M. Raba, P. Moberg, C. Löw, P. Nordlund, Nat. Struct. Mol. Biol. 21(8), 728–731 (2014)

    CAS  PubMed  Google Scholar 

  7. M. Satake, M. Enjoh, Y. Nakamura, et al., Biosci. Biotechnol. Biochem. 66(2), 378–384 (2002)

    CAS  PubMed  Google Scholar 

  8. M. Heyman, J.F. Desjeux, J. Pediatr. Gastroenterol. Nutr. 15(1), 48–57 (1992)

    CAS  PubMed  Google Scholar 

  9. L. Barthe, J. Woodley, G. Houin, Fundam Clin Pharmacol 13(2), 154–168 (1999)

    CAS  PubMed  Google Scholar 

  10. H. Teschemacher, Curr. Pharm. Des. 9(16), 1331–1344 (2003)

    CAS  PubMed  Google Scholar 

  11. W. Zhang, J. Miao, S. Wang, Y. Zhang, PLoS One 8(5), e63472 (2013)

  12. C.N.S. McLachlan, Med. Hypotheses 56(2), 262–272 (2001)

    CAS  PubMed  Google Scholar 

  13. Y. Jinsmaa, M. Yoshikawa, Peptides 1999, 957–962 (1999)

    Google Scholar 

  14. R. Rojas-Ronquillo, A. Cruz-Guerrero, A. Flores-Nájera, G. Rodríguez-Serrano, L. Gómez-Ruiz, J.P. Reyes-Grajeda, J. Jiménez-Guzmán, M. García-Garibay, Int. Dairy J. 26(2), 147–154 (2012)

    CAS  Google Scholar 

  15. D. Regazzo, D. Mollé, G. Gabai, D. Tomé, D. Dupont, J. Leonil, R. Boutrou, Mol. Nutr. Food Res. 54(10), 1428–1435 (2010)

    CAS  PubMed  Google Scholar 

  16. E.E. Sterchi, J.R. Green, M.J. Lentze, Biochem. Soc. Trans. 9(1), 130–131 (1981)

    CAS  PubMed  Google Scholar 

  17. G. Picariello, P. Ferranti, F. Addeo, Food Res. Int. 88, 327–335 (2016)

    CAS  Google Scholar 

  18. P. Plaisancié, R. Boutrou, M. Estienne, G. Henry, J. Jardin, A. Paquet, J. Léonil, J. Dairy Res. 82(1), 36–46 (2015)

    PubMed  Google Scholar 

  19. P. Plaisancié, J. Claustre, M. Estienne, G. Henry, R. Boutrou, A. Paquet, J. Léonil, J. Nutr. Biochem. 24(1), 213–221 (2013)

    PubMed  Google Scholar 

  20. J.P. Ulmschneider, J.C. Smith, S.H. White, M.B. Ulmschneider, J. Am, Chem. Soc. 133(39), 15487–15495 (2011)

    CAS  Google Scholar 

  21. M.B. Ulmschneider, J.C. Smith, J.P. Ulmschneider, Biophys. J. 98, L60–L62 (2010)

    CAS  PubMed  PubMed Central  Google Scholar 

  22. E.T. Kaiser, F.J. Kézdy, Proc.Natl.Acad.Sci.USA 80(4), 1137–1143 (1983)

    CAS  PubMed  Google Scholar 

  23. W.C. Wimley, S.H. White, Nat. Struct. Mol. Biol. 3, 842–848 (1996)

    CAS  Google Scholar 

  24. G. Mandalari, A.M. Mackie, N.M. Rigby, M.J.S. Wickham, E.N.C. Mills, Mol. Nutr. Food Res. 53, S131–S139 (2009)

    PubMed  Google Scholar 

  25. F.J. Moreno, A.R. Mackie, E.N.C. Mills, J. Agric, Food Chem. 53(25), 9810–9816 (2005)

    CAS  Google Scholar 

  26. Schrödinger, LLC. The PyMOL Molecular Graphics System, Version 2.0 https://www.schrodinger.com/pymol Accessed 9th Aug 2020

  27. S. Li, M. Hong, J. Am, Chem. Soc. 133(5), 1534–1544 (2011)

    CAS  Google Scholar 

  28. W. Humphrey, W. Dalke, K. Schulten, J. Mol. Graphics 14(1), 33–38 (1996)

    CAS  Google Scholar 

  29. M.J. Abraham, T. Murtola, R. Schulz, et al., Softwarex 1, 19–25 (2015)

    Google Scholar 

  30. G. Bussi, D. Donadio, M. Parrinello, J. Chem. Phys. 126(014101), 014101–014107 (2007)

    Google Scholar 

  31. H.J.C. Berendsen, J.P.M. Postma, W.F. van Gunsteren, A. DiNola, J.R. Haak, J. Chem. Phys. 81(8), 3684–3690 (1984)

    CAS  Google Scholar 

  32. B. Hess, H. Bekker, H.J.C. Berendsen, J.G.E.M. Fraaije, J. Comput. Biol. 18, 1463–1472 (1997)

    CAS  Google Scholar 

  33. M. Parrinello, A. Rahman, J. Appl. Phys. 52(12), 7182–7190 (1981)

    CAS  Google Scholar 

  34. M.B. Ulmschneider, J.P.F. Doux, J.A. Killian, J.C. Smith, J.P. Ulmschneider, J. Am. Chem. Soc. 132(10), 3452–3460 (2010)

    CAS  PubMed  Google Scholar 

  35. S.H. White, W.C. Wimley, Annu.Rev.Biophys.Biomol.Struc. 28(1), 319–365 (1999)

    CAS  Google Scholar 

  36. C.H. Chen, G. Wiedman, A. Khan, M.B. Ulmschneider, BBA-Biomembranes 1838, 2243–2249 (2014)

    CAS  PubMed  Google Scholar 

  37. R.B. Best, X. Zhu, J. Shim, P.E.M. Lopes, J. Mittal, M. Feig, A.D. MacKerell Jr., J. Chem. Theory Comput. 8(9), 3257–3273 (2012)

    CAS  PubMed  PubMed Central  Google Scholar 

  38. A.D. MacKerell Jr., D. Bashford, M. Bellott, et al., J.Phys.Chem.B 102(18), 3586–3616 (1998)

    CAS  PubMed  Google Scholar 

  39. A.D. MacKerell Jr., M. Feig, C.L. Brooks II, J.Comput.Chem. 25, 1400–1415 (2004)

    CAS  PubMed  Google Scholar 

  40. A.D. MacKerell, M. Feig, C.L. Brooks, J. Am, Chem. Soc. 126(3), 698–699 (2004)

    CAS  Google Scholar 

  41. J.P. Ulmschneider, M.B. Ulmschneider, J. Chem. Theory Comput. 5, 1803–1813 (2009)

    CAS  PubMed  Google Scholar 

  42. W.L. Jorgensen, J. Chandrasekhar, J.D. Madura, R.W. Impey, M.L. Klein, J. Chem. Phys. 79(2), 926–935 (1983)

    CAS  Google Scholar 

  43. A. Altis, M. Otten, P.H. Nguyen, R. Hegger, G. Stock, J. Chem. Phys 128(24), 06B620 (2008)

    Google Scholar 

  44. E. Lindahl, M. J. Abraham, B. Hess and D. van der Spoel. GROMACS 2020 Manual. https://zenodo.org/record/3562512 Accessed 14th August 2020

  45. B. Hess, Phys. Rev. E 65, 031910–031910 (2001)

    Google Scholar 

  46. T. Mendes Ferreira, F. Coreta-Gomes, O.H.S. Ollila, M.J. Moreno, W.L.C. Vaz, T. Topgaard, Phys. Chem. Chem. Phys. 15, 1976–1989 (2013)

    Google Scholar 

  47. M. Andersson, J.P. Ulmschneider, M.B. Ulmschneider, S.H. White, Biophys. J. 104(6), L12–L14 (2013)

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Y. Wang, C.H. Chen, D. Hu, M.B. Ulmschneider, J.P. Ulmschneider, Nat. Commun. 7, 13535 (2016)

    CAS  PubMed  PubMed Central  Google Scholar 

  49. X. Zhao, F. Pan, H. Xu, M. Yaseen, H. Shan, C.A. Hauser, S. Zhang, J.R. Lu, Chem. Soc. Rev. 39(9), 3480–3498 (2010)

    CAS  PubMed  Google Scholar 

  50. A.Q. Zhou, C.S. O'Hern, L. Regan, Proteins 82(10), 2574–2584 (2014)

    CAS  PubMed  Google Scholar 

  51. A. Altis, P.H. Nguyen, R. Hegger, G. Stock, J. Chem. Phys. 126(24), 244111 (2007)

    PubMed  Google Scholar 

  52. W. Kabsch, C. Sander, Biopolymers 22(12), 2577–2637 (1983)

    CAS  PubMed  Google Scholar 

  53. N.G. Zhdanova, E.A. Shirshin, E.G. Maksimov, I.M. Panchishin, A.M. Saletsky, V.V. Fadeev, Photochem Photobiol Sci 14(5), 897–908 (2015)

    CAS  PubMed  Google Scholar 

  54. N.G. Zhdanova, E.A. Shirshin, E.G. Maksimov, I.M. Panchishin, A.M. Saletsky, V.V. Fadeev, Photochem. Photobiol. Sci. 14(5), 897–908 (2015)

    CAS  PubMed  Google Scholar 

  55. J.C. Gumbart, M.B. Ulmschneider, A. Hazel, S.H. White, J.P. Ulmschneider, J. Membrane Biol. 251, 345–356 (2018)

    CAS  Google Scholar 

  56. J.M. Dyer, A. Grosvenor, in , ed. by M. Boland, M. Golding, H. Singh. Food Structures, Digestion and Health (Academic Press, San Diego, 2014), pp. 303–317

    Google Scholar 

Download references

Acknowledgements

C.H.C. was supported by KCL PhD scholarships. Authors thank to Universidad Autónoma Metropolitana for providing computer time in supercomputing facilities: cluster Yoltla, and cluster Axolotl.

Availability of Data and Material

All relevant data is provided in the manuscript and the Online Resource.

Code Availability

‘Not applicable’.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eduardo Jardón-Valadez.

Ethics declarations

Conflicts of Interest/Competing Interests

The authors have no financial or proprietary interests in any material discussed in this article.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 1.13 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jardón-Valadez, E., Chen, C.H., García-Garibay, M. et al. Passive Internalization of Bioactive β-Casein Peptides into Phospholipid (POPC) Bilayers. Free Energy Landscapes from Unbiased Equilibrium MD Simulations at μs-Time Scale. Food Biophysics 16, 70–83 (2021). https://doi.org/10.1007/s11483-020-09651-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11483-020-09651-x

Keywords

Navigation