Skip to main content

Advertisement

Log in

Thermochemical conversion of plastic waste to fuels: a review

  • Review
  • Published:
Environmental Chemistry Letters Aims and scope Submit manuscript

Abstract

Plastics are common in our daily lifestyle, notably in the packaging of goods to reducing volume, enhancing transportation efficiency, keeping food fresh and preventing spoilage, manufacturing healthcare products, preserving drugs and insulating electrical components. Nonetheless, massive amounts of non-biodegradable plastic wastes are generated and end up in the environment, notably as microplastics. The worldwide industrial production of plastics has increased by nearly 80% since 2002. Based on the degree of recyclability, plastics are classified into seven major groups: polyethylene terephthalate, high-density polyethylene, polyvinyl chloride, low-density polyethylene, polypropylene, polystyrene and miscellaneous plastics. Recycling technologies can reduce the accumulation of plastic wastes, yet they also pollute the environment, consume energy, labor and capital cost. Here we review waste-to-energy technologies such as pyrolysis, liquefaction and gasification for transforming plastics into clean fuels and chemicals. We focus on thermochemical conversion technologies for the valorization of waste plastics. This technology reduces the diversion of plastics to landfills and oceans, reduces carbon footprints, and has high conversion efficiency and cost-effectiveness. Depending on the conversion method, plastics can be selectively converted either to bio-oil, bio-crude oil, synthesis gas, hydrogen or aromatic char. We discuss the influence of process parameters such as temperature, heating rate, feedstock concentration, reaction time, reactor type and catalysts. Reaction mechanisms, efficiency, merits and demerits of biological and thermochemical plastic conversion processes are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Data source: Kumar and Samadder (2017)

Fig. 2
Fig. 3

Data source: Statista (2018)

Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

(C10H8O4)n :

Ethylene phthalate

(C3H6)n :

Polypropylene

(C8H8)n :

Polystyrene

°C/min:

Degree Celsius per minute

°C/s:

Degree Celsius per second

°C:

Degree Celsius

·H:

Hydrogen radical

·OH:

Hydroxyl radical

Al2O3 :

Aluminum oxide or alumina

ASTM:

American Society for Testing and Materials

Ba(OH)2 :

Barium hydroxide

C2H2 :

Acetylene

C2H4 :

Ethene or ethylene

C2H6 :

Ethane

C3H6 :

Propene

C3H8 :

Propane

C4H10 :

Butane

C4H8 :

Butene

Ca(OH)2 :

Calcium hydroxide

CeO2 :

Ceric oxide or ceria

CH4 :

Methane

Co/Al2O3 :

Cobalt on alumina

Co/CeO2 :

Cobalt on ceria

Co/CeO2–Al2O3 :

Cobalt on ceria–alumina

CO:

Carbon monoxide

CO2 :

Carbon dioxide

cP:

Centipoise

Cu/Al2O3 :

Copper on alumina

FDA:

United States Food and Drug Administration

Fe/Al2O3 :

Iron on alumina

Fe2O3/CeO2 :

Ferric oxide on ceria

FHYD/CA:

Ferrihydrite treated with citric acid

g/cm3 :

Gram per cubic centimeter

g/h:

Gram per hour

h:

Hour

H+ :

Cationic hydron

H2 :

Hydrogen

H2S:

Hydrogen sulfide

HDPE:

High-density polyethylene

HNZ:

Protonated natural zeolite

HZSM-5:

Protonated Zeolite Socony Mobil-5

IUPAC:

International Union of Pure and Applied Chemistry

kcal/kg:

Kilocalorie per kilogram

kJ/kg:

Kilojoule per kilogram

kJ/mol:

Kilojoule per mole

KOH:

Potassium hydroxide

kW:

Kilowatt

LDPE:

Low-density polyethylene

m2/g:

Meter square per gram

Mg(OH)2 :

Magnesium hydroxide

min:

Minute

MJ/kg:

Megajoule per kilogram

mm:

Millimeter

mmol/g:

Millimoles per gram

MMT:

Million metric tons

MPa:

Megapascal

N2 :

Nitrogen

NAFTA:

North American Free Trade Agreement

Ni/Al2O3 :

Nickel on alumina

Ni/SiO2–Al2O3 :

Nickel on silica/alumina

nm:

Nanometer

NOx :

Nitrogen oxides

O2 :

Oxygen

OH :

Anionic hydroxide

P c :

Critical pressure

PET or PETE:

Polyethylene terephthalate

pH:

Potential of hydrogen

PP:

Polypropylene

PS:

Polystyrene

PVC:

Polyvinyl chloride

RIC:

Resin Identification Code

Ru/Al2O3 :

Ruthenium on alumina

RuO2 :

Ruthenium(IV) oxide

s:

Second

SiO2/Al2O3 :

Silica–alumina

SOx :

Sulfur oxides

T c :

Critical temperature

wt%:

Weight percent

μm:

Micrometer

References

  • Acmite: Market Intelligence (2014) Global Polyamide Market. https://www.acmite.com/market-reports/chemicals/global-polyamide-market.html. Accessed 2 Feb 2020

  • Acomb JC, Wu C, Williams PT (2014) Control of steam input to the pyrolysis-gasification of waste plastics for improved production of hydrogen or carbon nanotubes. Appl Catal B Environ 147:571–584

    CAS  Google Scholar 

  • Adrados A, de Marco I, Caballero BM, López A, Laresgoiti MF, Torres A (2012) Pyrolysis of plastic packaging waste: a comparison of plastic residuals from material recovery facilities with simulated plastic waste. Waste Manag 32:826–832

    CAS  Google Scholar 

  • Ahmad M, Rajapaksha AU, Lim JE, Zhang M, Bolan N, Mohan D, Vithanage M, Lee SS, Ok YS (2014) Biochar as a sorbent for contaminant management in soil and water: a review. Chemosphere 99:19–33

    CAS  Google Scholar 

  • Ahmed N, Zeeshan M, Iqbal N, Farooq MZ, Shah SA (2018) Investigation on bio-oil yield and quality with scrap tire addition in sugarcane bagasse pyrolysis. J Clean Prod 196:927–934

    CAS  Google Scholar 

  • Ahorsu R, Medina F, Constantí M (2018) Significance and challenges of biomass as a suitable feedstock for bioenergy and biochemical production: a review. Energies 11:3366

    CAS  Google Scholar 

  • Al-Salem SM, Antelava A, Constantinou A, Manos G, Dutta A (2017) A review on thermal and catalytic pyrolysis of plastic solid waste (PSW). J Environ Manag 197:177–198

    CAS  Google Scholar 

  • Alshehrei F (2017) Biodegradation of synthetic and natural plastic by microorganisms. J Appl Environ Microbiol 5:8–19

    CAS  Google Scholar 

  • Alvarez J, Kumagai S, Wud C, Yoshioka T, Bilbao J, Olazar M, Williams PT (2014) Hydrogen production from biomass and plastic mixtures by pyrolysis-gasification. Int J Hydrogen Energy 39:10883–10891

    CAS  Google Scholar 

  • Angyal A, Miskolczi N, Bartha L (2007) Petrochemical feedstock by thermal cracking of plastic waste. J Anal Appl Pyrolysis 79:409–414

    CAS  Google Scholar 

  • Arkatkar A, Arutchelvi J, Sudhakar M, Bhaduri S, Uppara PV, Doble M (2009) Approaches to enhance the biodegradation of polyolefins. Open Environ Eng J 2:68–80

    CAS  Google Scholar 

  • Artham T, Doble M (2008) Biodegradation of aliphatic and aromatic polycarbonates. Mol Biosci 8:14–24

    CAS  Google Scholar 

  • ASTM International. D7611/D7611M-13ε1 (2014) Standard practice for coding plastic manufactured articles for resin identification. https://compass.astm.org/EDIT/html_annot.cgi?D7611+13e1. Accessed 20 Aug 2019

  • Azargohar R, Nanda S, Rao BVSK, Dalai AK (2013) Slow pyrolysis of deoiled Canola meal: product yields and characterization. Energy Fuels 27:5268–5279

    CAS  Google Scholar 

  • Azargohar R, Nanda S, Kozinski JA, Dalai AK, Sutarto R (2014) Effects of temperature on the physicochemical characteristics of fast pyrolysis bio-chars derived from Canadian waste biomass. Fuel 125:90–100

    CAS  Google Scholar 

  • Azargohar R, Nanda S, Dalai AK, Kozinski JA (2019) Physico-chemistry of biochars produced through steam gasification and hydro-thermal gasification of canola hull and canola meal pellets. Biomass Bioenergy 120:458–470

    CAS  Google Scholar 

  • Batra K (2014) Role of additives in linear low density polyethylene (LLDPE) films. Project Report. Indian Institute of Technology Kharagpur, India. https://www.slideshare.net/kamalbatra111/polyethylene-pe. Accessed 12 Mar 2020

  • Behrendt F, Neubauer Y, Oevermann M, Wilmes B, Zobel N (2008) Direct liquefaction of biomass. Chem Eng Technol 31:667–677

    CAS  Google Scholar 

  • Bergami E, Rota E, Caruso T, Birarda G, Vaccari L, Corsi I (2020) Plastics everywhere: first evidence of polystyrene fragments inside the common Antarctic collembolan Cryptopygus antarcticus. Biol Lett 16:20200093

    CAS  Google Scholar 

  • Bhaskar T, Tanabe M, Muto A, Sakata Y, Liu CF, Chen MD, Chao CC (2005) Analysis of chlorine distribution in the pyrolysis products of poly(vinylidene chloride) mixed with polyethylene, polypropylene or polystyrene. Polym Degrad Stabil 89:38–42

    CAS  Google Scholar 

  • Bissen R, Chawchai S (2020) Microplastics on beaches along the eastern Gulf of Thailand—a preliminary study. Mar Poll Bull 157:111345

    CAS  Google Scholar 

  • Brand B, Hardi F, Kim J, Suh DJ (2014) Effect of heating rate on biomass liquefaction: differences between subcritical water and supercritical ethanol. Energy 68:420–427

    CAS  Google Scholar 

  • Bridgwater AV (1999) Principles and practice of biomass fast pyrolysis processes for liquids. J Anal Appl Pyrolysis 51:3–22

    CAS  Google Scholar 

  • Bridgwater AV, Peacocke GVC (2000) Fast pyrolysis processes for biomass. Renew Sustain Energy Rev 4:1–73

    CAS  Google Scholar 

  • British Plastics Federation (2020) Oil consumption. https://www.bpf.co.uk/press/oil_consumption.aspx. Accessed 7 Apr 2020

  • Burra KG, Gupta AK (2018) Synergistic effects in steam gasification of combined biomass and plastic waste mixtures. Appl Energy 211:230–236

    CAS  Google Scholar 

  • Calabrò PS, Grosso M (2018) Bioplastics and waste management. Waste Manag 78:800–801

    Google Scholar 

  • Cardoso CAL, Machado ME, Caramão EB (2016) Characterization of bio-oils obtained from pyrolysis of bocaiuva residues. Renew Energy 91:21–31

    CAS  Google Scholar 

  • Ceresana (2020a) Market study: polyethylene—HDPE, 5 edn. https://www.ceresana.com/en/market-studies/plastics/polyethylene-hdpe/. Accessed 13 Apr 2020

  • Ceresana (2020b) Market study: polyethylene LDPE, 3 edn. https://www.ceresana.com/en/market-studies/plastics/polyethylene-ldpe/. Accessed 14 Apr 2020

  • Ceresana (2020c) Market study: bioplastics, 5 edn. https://www.ceresana.com/en/market-studies/plastics/bioplastics/. Accessed 14 Apr 2020

  • Changwichan K, Silalertruksa T, Gheewala SH (2018) Eco-efficiency assessment of bioplastics production systems and end-of-life options. Sustainability 10:952

    Google Scholar 

  • Chattopadhyay J, Pathak TS, Srivastava R, Singh AC (2016) Catalytic co-pyrolysis of paper biomass and plastic mixtures (HDPE (high density polyethylene), PP (polypropylene) and PET (polyethylene terephthalate)) and product analysis. Energy 103:513–521

    CAS  Google Scholar 

  • Cole M, Lindeque P, Halsband C, Galloway TS (2011) Microplastics as contaminants in the marine environment: a review. Marine Pollut Bull 62:2588–2597

    CAS  Google Scholar 

  • Correa CR, Kruse A (2018) Supercritical water gasification of biomass for hydrogen production—review. J Supercrit Fluids 133:573–590

    Google Scholar 

  • Demirbas A (2004) Pyrolysis of municipal plastic wastes for recovery of gasoline-range hydrocarbons. J Anal Appl Pyrolysis 72:97–102

    CAS  Google Scholar 

  • Deng H, Wei R, Luo W, Hu L, Li B, Di Y, Shi H (2020) Microplastic pollution in water and sediment in a textile industrial area. Environ Pollut 258:113658

    CAS  Google Scholar 

  • Emadian SM, Onay TT, Demirel B (2017) Biodegradation of bioplastics in natural environments. Waste Manag 59:526–536

    CAS  Google Scholar 

  • Ephraim A, Minh DP, Lebonnois D, Peregrina C, Sharrock P, Nzihou A (2018) Co-pyrolysis of wood and plastics: influence of plastic type and content on product yield, gas composition and quality. Fuel 231:110–117

    CAS  Google Scholar 

  • Eriksen M, Lebreton LCM, Carson HS, Thiel M, Moore CJ, Borerro JC, Galgani F, Ryan PG, Reisser J (2014) Plastic pollution in the world’s oceans: more than 5 trillion plastic pieces weighing over 250,000 tons afloat at sea. PLoS ONE 9:e111913

    Google Scholar 

  • FDA (U.S. Food and Drug Administration) (2020) Bisphenol A (BPA): use in food contact application. https://www.fda.gov/newsevents/publichealthfocus/ucm064437.htm#regulations. Accessed 22 Mar 2020

  • Feng Z, Zhao J, Rockwell J, Bailey D, Huffman G (1996) Direct liquefaction of waste plastics and coliquefaction of coal-plastic mixtures. Fuel Process Technol 49:17–30

    CAS  Google Scholar 

  • Fischer I, Schmitt WF, Porth HC, Allsopp MW, Vianello G (2014) Poly(vinyl chloride). Ullmann’s encyclopedia of industrial chemistry. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

    Google Scholar 

  • Fushimi C, Araki K, Yamaguchi Y, Tsutsumi A (2003) Effect of heating rate on steam gasification of biomass. 1. Reactivity of char. Ind Eng Chem Res 42:3922–3928

    CAS  Google Scholar 

  • Geyer R, Jambeck JR, Law KL (2017) Production, use, and fate of all plastics ever made. Science 3:e1700782

    Google Scholar 

  • Goldstein Research (2020) Global tire recycling market analysis 2025: opportunity, demand, growth and forecast 2017–2025. https://www.goldsteinresearch.com/report/global-tire-recycling-industry-market-trends-analysis. Accessed 17 Apr 2020

  • Gong M, Nanda S, Hunter HN, Zhu W, Dalai AK, Kozinski JA (2017a) Lewis acid catalyzed gasification of humic acid in supercritical water. Catal Today 291:13–23

    CAS  Google Scholar 

  • Gong M, Nanda S, Romero MJ, Zhu W, Kozinski JA (2017b) Subcritical and supercritical water gasification of humic acid as a model compound of humic substances in sewage sludge. J Supercrit Fluids 119:130–138

    CAS  Google Scholar 

  • González-Hernández M, Hernández-Sánchez C, González-Sálamo J, López-Darias J, Hernández-Borges J (2020) Monitoring of meso and microplastic debris in Playa Grande beach (Tenerife, Canary Islands, Spain) during a moon cycle. Mar Pollut Bull 150:110757

    Google Scholar 

  • Gourmelon G (2015) Global Plastic production rises, recycling lags. Worldwatch Institute, Washington

    Google Scholar 

  • Graham ER, Thompson JT (2009) Deposit- and suspension feeding sea cucumbers (Echinodermata) ingest plastic fragments. J Exp Mar Biol Ecol 368:22–29

    Google Scholar 

  • Guern CL (2018) When the Mermaids cry: the great plastic tide. http://plastic-pollution.org/. Accessed 23 Aug 2018

  • Guo Y, Wang SZ, Xu DH, Gong YM, Ma HH, Tang XY (2010) Review of catalytic supercritical water gasification for hydrogen production from biomass. Renew Sustain Energy Rev 14:334–343

    CAS  Google Scholar 

  • Heikkinen JM, Hordijk JC, de Jong W, Spliethoff H (2004) Thermogravimetry as a tool to classify waste components to be used for energy generation. J Anal Appl Pyrolysis 71:883–900

    CAS  Google Scholar 

  • Hita I, Arabiourrutia M, Olazar M, Bilbao J, Arandes JM, Castaño P (2016) Opportunities and barriers for producing high quality fuels from the pyrolysis of scrap tires. Renew Sustain Energy Rev 56:745–759

    CAS  Google Scholar 

  • Hoornweg D, Bhada-Tata P (2012) What a waste: a global review of solid waste management. The World Bank, Washington

    Google Scholar 

  • Huber GW, Iborra S, Corma A (2006) Synthesis of transportation fuels from biomass: chemistry, catalysts, and engineering. Chem Rev 106:4044–4098

    CAS  Google Scholar 

  • IFA (2018) (Institute for Occupational Safety and Health of the German Social Accident Insurance). GESTIS Substance Database. Polyethylene terephthalate. http://gestis-en.itrust.de/nxt/gateway.dll/gestis_en/530566.xml?f=templates$fn=default.htm$3.0. Accessed 20 Aug 2018

  • Jambeck JR, Geyer R, Wilcox C, Siegler TR, Perryman M, Andrady A, Narayan R, Law KL (2015) Plastic waste inputs from land into the ocean. Science 347:768–771

    CAS  Google Scholar 

  • Jung SH, Kim SJ, Kim JS (2013) The influence of reaction parameters on characteristics of pyrolysis oils from waste high impact polystyrene and acrylonitrile–butadiene–styrene using a fluidized bed reactor. Fuel Process Technol 116:123–129

    CAS  Google Scholar 

  • Kale G, Kijchavengkul T, Auras R, Rubino M (2007) Compostability of bioplastic packaging materials: an overview. Macromol Biosci 7:255–277

    CAS  Google Scholar 

  • Kanaujia PK, Sharma YK, Garg MO, Tripathi D, Singh R (2014) Review of analytical strategies in the production and upgrading of bio-oils derived from lignocellulosic biomass. J Anal Appl Pyrolysis 105:55–74

    CAS  Google Scholar 

  • Kanhai LDK, Gardfeldt K, Krumpen T, Thompson RC, O’Connor I (2020) Microplastics in sea ice and seawater beneath ice floes from the Arctic Ocean. Sci Rep 10:5004

    CAS  Google Scholar 

  • Kim JR, Yoon JH, Park DW (2002) Catalytic recycling of the mixture of polypropylene and polystyrene. Polym Degrad Stabil 76:61–67

    CAS  Google Scholar 

  • Kumagai S, Alvarez J, Blanco PH, Wud C, Yoshioka T, Olazar M, Williams PT (2015) Novel Ni–Mg–Al–Ca catalyst for enhanced hydrogen production for the pyrolysis–gasification of a biomass/plastic mixture. J Anal Appl Pyrolysis 113:15–21

    CAS  Google Scholar 

  • Kumar A, Samadder SR (2017) A review on technological options of waste to energy for effective management of municipal solid waste. Waste Manag 69:407–422

    CAS  Google Scholar 

  • Kunwar B, Cheng HN, Chandrashekaran SR, Sharma BK (2016) Plastics to fuel: a review. Renew Sustain Energy Rev 54:421–428

    CAS  Google Scholar 

  • Kwon BG, Saido K, Koizumi K, Sato H, Ogawa N, Chung SY, Kusui T, Kodera Y, Kogure K (2014) Regional distribution of styrene analogues generated from polystyrene degradation along the coastlines of the North-East Pacific Ocean and Hawaii. Environ Pollut 188:45–49

    CAS  Google Scholar 

  • Labaki M, Jeguirim M (2017) Thermochemical conversion of waste tyres—a review. Environ Sci Poll Res 24:9962–9992

    CAS  Google Scholar 

  • Law KL, Morét-Ferguson SE, Goodwin DS, Zettler ER, DeForce E, Kukulka T, Proskurowski G (2014) Distribution of surface plastic debris in the eastern Pacific Ocean from an 11-year data set. Environ Sci Technol 48:4732–4738

    CAS  Google Scholar 

  • Lenntech (2020) Polyvinyl chloride (PVC). https://www.lenntech.com/polyvinyl-chloride-pvc.htm. Accessed 15 Mar 2020

  • Li C, Busquets R, Campos LC (2020) Assessment of microplastics in freshwater systems: a review. Sci Total Environ 707:135578

    CAS  Google Scholar 

  • Lu P, Huang Q, Bourtsalas ACT, Chi Y, Yan J (2018) Synergistic effects on char and oil produced by the co-pyrolysis of pine wood, polyethylene and polyvinyl chloride. Fuel 230:359–367

    CAS  Google Scholar 

  • Luo M, Curtis CW (1996) Effect of reaction parameters and catalyst type on waste plastic liquefaction and coprocessing with coal. Fuel Process Technol 49:177–196

    CAS  Google Scholar 

  • Machin EB, Pedroso DT, de Carvalho JA Jr (2017a) Energetic valorization of waste tires. Renew Sustain Energy Rev 68:306–315

    Google Scholar 

  • Machin EB, Pedroso DT, de Carvalho JA Jr (2017b) Technical assessment of discarded tires gasification as alternative technology for electricity generation. Waste Manag 68:412–420

    CAS  Google Scholar 

  • Martínez JD, Puy N, Murillo R, García T, Navarro MV, Mastral AM (2013) Waste tyre pyrolysis—a review. Renew Sustain Energy Rev 23:179–213

    Google Scholar 

  • Maschio G, Koufopanos C, Lucchesi A (1992) Pyrolysis, a promising route for biomass utilization. Bioresour Technol 42:219–231

    CAS  Google Scholar 

  • Mathalon A, Hill P (2014) Microplastic fibers in the intertidal ecosystem surrounding Halifax Harbor, Nova Scotia. Mar Pollut Bull 81:69–79

    CAS  Google Scholar 

  • Miandad R, Barakat MA, Aburiazaiza AS, Rehan M, Ismail IMI, Nizami AS (2017) Effect of plastic waste types on pyrolysis liquid oil. Int Biodeter Biodegrad 119:239–252

    CAS  Google Scholar 

  • Mohan SK, Srivastava T (2010) Microbial deterioration and degradation of polymeric materials. J Biochem Technol 2:210–215

    CAS  Google Scholar 

  • Morone P, Tartiu VE, Falcone P (2015) Assessing the potential of biowaste for bioplastics production through social network analysis. J Clean Prod 90:43–54

    Google Scholar 

  • Mun SP, Hassan EM (2004) Liquefaction of lignocellulosic biomass with mixtures of ethanol and small amounts of phenol in the presence of methanesulfonic acid catalyst. J Ind Eng Chem 10:722–727

    CAS  Google Scholar 

  • Nanda S, Mohanty P, Pant KK, Naik S, Kozinski JA, Dalai AK (2013) Characterization of North American lignocellulosic biomass and biochars in terms of their candidacy for alternate renewable fuels. Bioenergy Res 6:663–677

    CAS  Google Scholar 

  • Nanda S, Mohammad J, Reddy SN, Kozinski JA, Dalai AK (2014) Pathways of lignocellulosic biomass conversion to renewable fuels. Biomass Convers Biorefin 4:157–191

    CAS  Google Scholar 

  • Nanda S, Reddy SN, Hunter HN, Butler IS, Kozinski JA (2015a) Supercritical water gasification of lactose as a model compound for valorization of dairy industry effluents. Ind Eng Chem Res 54:9296–9306

    CAS  Google Scholar 

  • Nanda S, Reddy SN, Hunter HN, Dalai AK, Kozinski JA (2015b) Supercritical water gasification of fructose as a model compound for waste fruits and vegetables. J Supercrit Fluids 104:112–121

    CAS  Google Scholar 

  • Nanda S, Dalai AK, Berruti F, Kozinski JA (2016) Biochar as an exceptional bioresource for energy, agronomy, carbon sequestration, activated carbon and specialty materials. Waste Biomass Valor 7:201–235

    CAS  Google Scholar 

  • Nanda S, Gong M, Hunter HN, Dalai AK, Gökalp I, Kozinski JA (2017a) An assessment of pinecone gasification in subcritical, near-critical and supercritical water. Fuel Process Technol 168:84–96

    CAS  Google Scholar 

  • Nanda S, Rana R, Zheng Y, Kozinski JA, Dalai AK (2017b) Insights on pathways for hydrogen generation from ethanol. Sustain Energy Fuels 1:1232–1245

    CAS  Google Scholar 

  • Nanda S, Dalai AK, Pant KK, Gökalp I, Kozinski JA (2018a) An appraisal on biochar functionality and utility in agronomy. In: Konur O (ed) Bioenergy and biofuels. CRC Press, Florida, pp 389–409

    Google Scholar 

  • Nanda S, Rana R, Sarangi PK, Dalai AK, Kozinski JA (2018b) A broad introduction to first, second and third generation biofuels. In: Sarangi PK, Nanda S, Mohanty P (eds) Recent advancements in biofuels and bioenergy utilization. Springer Nature, Singapore, pp 1–25

    Google Scholar 

  • Nanda S, Rana R, Hunter HN, Fang Z, Dalai AK, Kozinski JA (2019a) Hydrothermal catalytic processing of waste cooking oil for hydrogen-rich syngas production. Chem Eng Sci 195:935–945

    CAS  Google Scholar 

  • Nanda S, Reddy SN, Hunter HN, Vo DVN, Kozinski JA, Gökalp I (2019b) Catalytic subcritical and supercritical water gasification as a resource recovery approach from waste tires for hydrogen-rich syngas production. J Supercrit Fluids 154:104627

    CAS  Google Scholar 

  • Narobe M, Golob J, Klinar D, Francetič V, Likozar B (2014) Co-gasification of biomass and plastics: pyrolysis kinetics studies, experiments on 100 kW dual fluidized bed pilot plant and development of thermodynamic equilibrium model and balances. Bioresour Technol 162:21–29

    CAS  Google Scholar 

  • Nikaido Y, Yoshizawa K, Danbara N, Tsujita-Kyutoku M, Yuri T, Uehara N, Tsubura A (2004) Effects of maternal xenoestrogen exposure on development of the reproductive tract and mammary gland in female CD-1 mouse offspring. Reprod Toxicol 18:803–811

    CAS  Google Scholar 

  • Okolie JA, Rana R, Nanda S, Dalai AK, Kozinski JA (2019) Supercritical water gasification of biomass: a state-of-the-art review of process parameters, reaction mechanisms and catalysis. Sustain Energy Fuels 3:578–598

    CAS  Google Scholar 

  • Okolie JA, Nanda S, Dalai AK, Berruti F, Kozinski JA (2020a) A review on subcritical and supercritical water gasification of biogenic, polymeric and petroleum wastes to hydrogen-rich synthesis gas. Renew Sustain Energy Rev 119:109546

    CAS  Google Scholar 

  • Okolie JA, Nanda S, Dalai AK, Kozinski JA (2020b) Hydrothermal gasification of soybean straw and flax straw for hydrogen-rich syngas production: experimental and thermodynamic modeling. Energy Convers Manag 208:112545

    CAS  Google Scholar 

  • Okolie JA, Nanda S, Dalai AK, Kozinski JA (2020c) Optimization and modeling of process parameters during hydrothermal gasification of biomass model compounds to generate hydrogen-rich gas products. Int J Hydrogen Energy 45:18275–18288

    CAS  Google Scholar 

  • Onwudili JA, Williams PT (2016) Catalytic supercritical water gasification of plastics with supported RuO2: a potential solution to hydrocarbons–water pollution problem. Process Saf Environ Protect 102:140–149

    CAS  Google Scholar 

  • Padervand M, Lichtfouse E, Robert D, Wang C (2020) Removal of microplastics from the environment. A review. Environ Chem Lett 18:807–828

    CAS  Google Scholar 

  • Park HC, Choi HS, Lee JE (2016) Heat transfer of bio-oil in a direct contact heat exchanger during condensation. Korean J Chem Eng 33:1159–1169

    CAS  Google Scholar 

  • Parparita E, Uddin MA, Watanabe T, Kato Y, Yanik J, Vasile C (2015) Gas production by steam gasification of polypropylene/biomass waste composites in a dual-bed reactor. J Mater Cycles Waste Manag 17:756–768

    CAS  Google Scholar 

  • Pei X, Yuan X, Zeng G, Huang H, Wang J, Li H, Zhu H (2012) Co-liquefaction of microalgae and synthetic polymer mixture in sub- and supercritical ethanol. Fuel Process Technol 93:35–44

    CAS  Google Scholar 

  • Reddy SN, Nanda S, Dalai AK, Kozinski JA (2014) Supercritical water gasification of biomass for hydrogen production. Int J Hydrogen Energy 39:6912–6926

    CAS  Google Scholar 

  • Ron EZ, Rosenberg E (2002) Biosurfactants and oil bioremediation. Curr Opin Biotechnol 13:249–252

    CAS  Google Scholar 

  • Rowe RK, Islam MZ (2009) Impact of landfill liner time–temperature history on the service life of HDPE geomembranes. Waste Manag 29:2689–2699

    CAS  Google Scholar 

  • Ruddy DA, Schaidle JA, Ferrell JR III, Wang J, Moens L, Hensley JE (2014) Recent advances in heterogeneous catalysts for bio-oil upgrading via “ex situ catalytic fast pyrolysis”: catalyst development through the study of model compounds. Green Chem 16:454–490

    CAS  Google Scholar 

  • Sajdak M, Muzyka R (2014) Use of plastic waste as a fuel in the co-pyrolysis of biomass. Part I: the effect of the addition of plastic waste on the process and products. J Anal Appl Pyrolysis 107:267–275

    CAS  Google Scholar 

  • Sajdak M, Muzyka R, Hrabak J, Słowik K (2015) Use of plastic waste as a fuel in the co-pyrolysis of biomass. Part III: optimisation of the co-pyrolysis process. J Anal Appl Pyrolysis 112:298–305

    CAS  Google Scholar 

  • Sanahuja-Parejo O, Veses A, Navarro MV, López JM, Murillo R, Callén MS, García T (2018) Catalytic co-pyrolysis of grape seeds and waste tyres for the production of drop-in biofuels. Energy Convers Manag 171:1202–1212

    CAS  Google Scholar 

  • Santos DKF, Rufino RD, Luna JM, Santos VA, Sarubbo LA (2016) Biosurfactants: multifunctional biomolecules of the 21st century. Int J Mol Sci 17:401

    Google Scholar 

  • Seidelt S, Müller-Hagedorn M, Bockhorn H (2006) Description of tire pyrolysis by thermal degradation behaviour of main components. J Anal Appl Pyrolysis 75:11–18

    CAS  Google Scholar 

  • Shabtai J, Xiao X, Zmierczak W (1997) Depolymerization-liquefaction of plastics and rubbers. 1. Polyethylene, polypropylene, and polybutadiene. Energy Fuels 11:76–87

    CAS  Google Scholar 

  • Shah SAY, Zeeshan M, Farooq MZ, Ahmed N, Iqbal N (2019) Co-pyrolysis of cotton stalk and waste tire with a focus on liquid yield quantity and quality. Renew Energy 130:238–244

    CAS  Google Scholar 

  • Sharuddin SDA, Abnisa F, Daud WMAW, Aroua MK (2016) A review on pyrolysis of plastic wastes. Energy Convers Manag 115:308–326

    Google Scholar 

  • Shimao M (2001) Biodegradation of plastics. Curr Opin Biotechnol 12:242–247

    CAS  Google Scholar 

  • Singh RK, Ruj B (2016) Time and temperature depended fuel gas generation from pyrolysis of real world municipal plastic waste. Fuel 174:164–171

    CAS  Google Scholar 

  • Sivan A (2011) New perspectives in plastic biodegradation. Curr Opin Biotechnol 22:422–426

    CAS  Google Scholar 

  • Smith M, Love DC, Rochman CM, Neff RA (2018) Microplastics in seafood and the implications for human health. Curr Environ Health Rep 5:375–386

    CAS  Google Scholar 

  • Sophonrat N, Sandström L, Johansson AC, Yang W (2017) Co-pyrolysis of mixed plastics and cellulose: an interaction study by Py-GC × GC/MS. Energy Fuels 31:11078–11090

    CAS  Google Scholar 

  • Statista (2018) Distribution of global plastics materials production in 2016, by region. https://www.statista.com/statistics/281126/global-plastics-production-share-of-various-countries-and-regions/. Accessed 22 Aug 2018

  • Statista (2020a) Production of plastics worldwide from 1950 to 2018 (in million metric tons). https://www.statista.com/statistics/282732/global-production-of-plastics-since-1950/. Accessed 31 Aug 2020

  • Statista (2020b) Projected worldwide tire market volume from 2014 to 2018. https://www.statista.com/statistics/625275/global-tire-market-volume/. Accessed 17 Apr 2020

  • Susanti RF, Dianningrum LW, Yum T, Kim Y, Lee BG, Kim J (2012) High-yield hydrogen production from glucose by supercritical water gasification without added catalyst. Int J Hydrogen Energy 37:11677–11690

    CAS  Google Scholar 

  • Takallou HB (2015) Waste tire management and EPR programs in the United States and Canada. 2015 RCBC Zero Waste Conference; Creating a Circular Economy—Join the Conversation; May 6–8, 2015; Whistler, British Columbia, Canada

  • The World Bank (2019) Solid Waste Management. http://www.worldbank.org/en/topic/urbandevelopment/brief/solid-waste-management. Accessed 17 Apr 2020

  • Tokiwa Y, Calabia BP, Ugwu CU, Aiba S (2009) Biodegradability of plastics. Int J Mol Sci 10:3722–3742

    CAS  Google Scholar 

  • Toledo M, Ripoll N, Céspedes J, Zbogar-Rasic A, Fedorova N, Jovicic V, Delgado A (2018) Syngas production from waste tires using a hybrid filtration reactor under different gasifier agents. Energy Convers Manag 172:381–390

    CAS  Google Scholar 

  • Toor SS, Rosendahl L, Rudolf A (2011) Hydrothermal liquefaction of biomass: a review of subcritical water technologies. Energy 36:2328–2342

    CAS  Google Scholar 

  • Toraman HE, Dijkmans T, Djokic MR, Van Geem KM, Marin GB (2014) Detailed compositional characterization of plastic waste pyrolysis oil by comprehensive two-dimensional gas-chromatography coupled to multiple detectors. J Chromatogr A 1359:237–246

    CAS  Google Scholar 

  • Van Cauwenberghe L, Vanreusel A, Mees J, Janssen CR (2013) Microplastic pollution in deep-sea sediments. Environ Pollut 182:495–499

    Google Scholar 

  • Vimala PP, Mathew L (2016) Biodegradation of polyethylene using Bacillus subtilis. Proc Technol 24:232–239

    Google Scholar 

  • Wang B, Huang Y, Zhang J (2014) Hydrothermal liquefaction of lignite, wheat straw and plastic waste in sub-critical water for oil: product distribution. J Anal Appl Pyrolysis 110:382–389

    CAS  Google Scholar 

  • Wang Z, Shen D, Wu C, Gu S (2018) Thermal behavior and kinetics of co-pyrolysis of cellulose and polyethylene with the addition of transition metals. Energy Convers Manag 172:32–38

    CAS  Google Scholar 

  • Waste Atlas (2019) Waste management for everyone. http://www.atlas.d-waste.com/. Accessed 5 Feb 2019

  • Wilkes CE, Summers JW, Daniels CA, Berard MT (2005) PVC handbook. Hanser Verlag, Munich

    Google Scholar 

  • Williams PT, Slaney E (2007) Analysis of products from the pyrolysis and liquefaction of single plastics and waste plastic mixtures. Resour Conserv Recycl 51:754–769

    Google Scholar 

  • Williams PT, Williams EA (1999) Interaction of plastics in mixed-plastics pyrolysis. Energy Fuels 13:188–196

    CAS  Google Scholar 

  • Worldwatch Institute (2012) Global municipal solid waste continues to grow. http://www.worldwatch.org/global-municipal-solid-waste-continues-grow. Accessed 31 Jan 2018

  • Wright SL, Thompson RC, Galloway TS (2013) The physical impacts of microplastics on marine organisms: a review. Environ Pollut 178:483–492

    CAS  Google Scholar 

  • Wu X, Liang J, Wu Y, Hu H, Huang S, Wu K (2017) Co-liquefaction of microalgae and polypropylene in sub-/super-critical water. RSC Adv 7:13768–13776

    CAS  Google Scholar 

  • Yadav P, Reddy SN, Nanda S (2019) Cultivation and conversion of algae for wastewater treatment and biofuel production. In: Nanda S, Sarangi PK, Vo DVN (eds) Fuel processing and energy utilization. CRC Press, Florida, pp 159–175

    Google Scholar 

  • Yin L, Wen X, Du C, Jiang J, Wu L, Zhang Y, Hu Z, Hu S, Feng Z, Zhou Z, Long Y, Gu Q (2020) Comparison of the abundance of microplastics between rural and urban areas: a case study from East Dongting Lake. Chemosphere 244:125486

    CAS  Google Scholar 

  • Zhang L, Xu CC, Champagne P (2010) Overview of recent advances in thermo-chemical conversion of biomass. Energy Convers Manag 51:969–982

    CAS  Google Scholar 

  • Zhang Y, Wu C, Nahil MA, Williams P (2015) Pyrolysis–catalytic reforming/gasification of waste tires for production of carbon nanotubes and hydrogen. Energy Fuels 29:3328–3334

    CAS  Google Scholar 

  • Zhang K, Shi H, Peng J, Wang Y, Xiong X, Wu C, Lam PK (2018) Microplastic pollution in China’s inland water systems: a review of findings, methods, characteristics, effects, and management. Sci Total Environ 630:1641–1653

    CAS  Google Scholar 

  • Zhong C, Wei X (2004) A comparative experimental study on the liquefaction of wood. Energy 29:1731–1741

    CAS  Google Scholar 

  • Zhou C, Gong Z, Hu J, Cao A, Liang H (2015) A cost-benefit analysis of landfill mining and material recycling in China. Waste Manag 35:191–198

    Google Scholar 

  • Zmierczak W, Xiao X, Shabtai J (1996) Depolymerization-liquefaction of plastics and rubbers. 2. Polystyrenes and styrene-butadiene copolymers. Fuel Process Technol 49:31–48

    CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Natural Sciences and Engineering Research Council of Canada (NSERC), MITACS Canada and the City of London, Ontario for funding this research.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sonil Nanda or Franco Berruti.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nanda, S., Berruti, F. Thermochemical conversion of plastic waste to fuels: a review. Environ Chem Lett 19, 123–148 (2021). https://doi.org/10.1007/s10311-020-01094-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10311-020-01094-7

Keywords

Navigation