Skip to main content
Log in

From Crossing-Free Graphs on Wheel Sets to Embracing Simplices and Polytopes with Few Vertices

  • Ricky Pollack Memorial Issue
  • Published:
Discrete & Computational Geometry Aims and scope Submit manuscript

Abstract

A set \(P = H \cup \{w\}\) of \(n+1\) points in general position in the plane is called a wheel set if all points but w are extreme. We show that for the purpose of counting crossing-free geometric graphs on such a set P, it suffices to know the frequency vector of P. While there are roughly \(2^n\) distinct order types that correspond to wheel sets, the number of frequency vectors is only about \(2^{n/2}\). We give simple formulas in terms of the frequency vector for the number of crossing-free spanning cycles, matchings, triangulations, and many more. Based on that, the corresponding numbers of graphs can be computed efficiently. In particular, we rediscover an already known formula for w-embracing triangles spanned by H. Also in higher dimensions, wheel sets turn out to be a suitable model to approach the problem of computing the simplicial depth of a point w in a set H, i.e., the number of w-embracing simplices. While our previous arguments in the plane do not generalize easily, we show how to use similar ideas in \(\mathbb {R}^d\) for any fixed d. The result is an \(O(n^{d-1})\) time algorithm for computing the simplicial depth of a point w in a set H of n points, improving on the previously best bound of \(O(n^d\log n)\). Based on our result about simplicial depth, we can compute the number of facets of the convex hull of \(n=d+k\) points in general position in \(\mathbb {R}^d\) in time \(O(n^{\max \{\omega ,k-2\}})\) where \(\omega \approx 2.373\), even though the asymptotic number of facets may be as large as \(n^k\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. Here, \(\varphi (k)\) denotes Euler’s totient function, which counts the integers coprime to k that are at most k.

  2. Sequence A007147 on OEIS (Online Encyclopedia of Integer Sequences).

  3. Sequence A000016 on OEIS.

  4. Sequence A001006 on OEIS.

  5. Sequence A000108 on OEIS, which also counts abstract binary trees.

  6. Sequence A001764 on OEIS, which, incidentally, also counts abstract ternary trees.

  7. Sequence A006013 on OEIS, which also counts pairs of abstract ternary trees, implying the used identity since the left hand side is just the convolution of the counting sequence of abstract ternary trees.

  8. The number \(\Box \) is also the number of crossings of the complete geometric graph on \(\widetilde{P}\), a quantity that has obtained special attention in connection with the so-called rectilinear crossing number of \(K_n\) (i.e., the smallest number of crossings in a straight line drawing of the complete graph in the plane).

  9. Following [39], we add the requirement that the origin is the centroid, in contrast to, e.g., [26, Chap. 5.6].

  10. For \(n = a_1 + a_2 + \dots + a_m\), we have \(\sum _{\{i,j,k\} \in {\left( {\begin{array}{c}[m]\\ 3\end{array}}\right) }} a_i a_j a_k = \frac{1}{6} \sum _{i=1}^m a_i (n-a_i) (n - 2a_i)\).

References

  1. Ábrego, B.M., Fernández-Merchant, S.: A lower bound for the rectilinear crossing number. Graphs Comb. 21(3), 293–300 (2005)

    MathSciNet  MATH  Google Scholar 

  2. Afshani, P., Sheehy, D.R., Stein, Y.: Approximating the simplicial depth (2015). arXiv:1512.04856

  3. Aichholzer, O., Hackl, T., Huemer, C., Hurtado, F., Krasser, H., Vogtenhuber, B.: On the number of plane geometric graphs. Graphs Combin. 23(Supplement–1), 67–84 (2007)

    MathSciNet  MATH  Google Scholar 

  4. Aigner, M.: Motzkin numbers. Eur. J. Combin. 19(6), 663–675 (1998)

    MathSciNet  MATH  Google Scholar 

  5. Arkin, E.M., Khuller, S., Mitchell, J.S.B.: Geometric knapsack problems. Algorithmica 10(5), 399–427 (1993)

    MathSciNet  MATH  Google Scholar 

  6. Becker, H.W.: Planar rhyme schemes. Bull. Am. Math. Soc. 58, 39 (1952)

    Google Scholar 

  7. Brouwer, A.E.: The enumeration of locally transitive tournaments. Technical Report Report ZW 138/80, Mathematisch Centrum, Amsterdam (1980)

  8. Bürgisser, P., Lickteig, T., Clausen, M., Shokrollahi, A.: Algebraic Complexity Theory. Grundlehren der Mathematischen Wissenschaften. Springer, Berlin (1996)

    Google Scholar 

  9. Cheng, A.Y., Ouyang, M.: On algorithms for simplicial depth. In: Proceedings of the 13th Canadian Conference on Computational Geometry, pp. 53–56 (2001)

  10. Dulucq, S., Penaud, J.-G.: Cordes, arbres et permutations. Discret. Math. 117(1), 89–105 (1993)

    MathSciNet  MATH  Google Scholar 

  11. Dumitrescu, A., Schulz, A., Sheffer, A., Tóth, Cs.D.: Bounds on the maximum multiplicity of some common geometric graphs. SIAM J. Discret. Math. 27(2), 802–826 (2013)

  12. Edelsbrunner, H., Mücke, E.P.: Simulation of simplicity: a technique to cope with degenerate cases in geometric algorithms. ACM Trans. Graph. 9(1), 66–104 (1990)

    MATH  Google Scholar 

  13. Edelsbrunner, H., O’Rourke, J., Seidel, R.: Constructing arrangements of lines and hyperplanes with applications. SIAM J. Comput. 15(2), 341–363 (1986)

    MathSciNet  MATH  Google Scholar 

  14. Eppstein, D., Overmars, M.H., Rote, G., Woeginger, G.J.: Finding minimum area \(k\)-gons. Discrete Comput. Geom. 7(1), 45–58 (1992)

    MathSciNet  MATH  Google Scholar 

  15. Flajolet, P., Noy, M.: Analytic combinatorics of non-crossing configurations. Discrete Math. 204(1–3), 203–229 (1999)

    MathSciNet  MATH  Google Scholar 

  16. Gil, J., Steiger, W.L., Wigderson, A.: Geometric medians. Discrete Math. 108(1–3), 37–51 (1992)

    MathSciNet  MATH  Google Scholar 

  17. Goodman, J.E., Pollack, R.: Multidimensional sorting. SIAM J. Comput. 12(3), 484–507 (1983)

    MathSciNet  MATH  Google Scholar 

  18. Goodman, J.E., Pollack, R.: Semispaces of configurations, cell complexes of arrangements. J. Combin. Theory Ser. A 37(3), 257–293 (1984)

    MathSciNet  MATH  Google Scholar 

  19. Grünbaum, B.: Convex Polytopes, 2nd edn. Springer, Berlin (2003)

    MATH  Google Scholar 

  20. Huemer, C., Pilz, A., Silveira, R.I.: A new lower bound on the maximum number of plane graphs using production matrices. In: Proceedings of the 34th European Workshop on Computational Geometry, pp. 9:1–9:6 (2018)

  21. Hurtado, F., Noy, M.: Counting triangulations of almost-convex polygons. Ars Combin. 45, 169–179 (1997)

    MathSciNet  MATH  Google Scholar 

  22. Khuller, S., Mitchell, J.S.B.: On a triangle counting problem. Inf. Process. Lett. 33(6), 319–321 (1990)

    MathSciNet  MATH  Google Scholar 

  23. Linusson, S.: The number of \(M\)-sequences and \(f\)-vectors. Combinatorica 19(2), 255–266 (1999)

    MathSciNet  MATH  Google Scholar 

  24. Liu, R.Y.: On a notion of data depth based on random simplices. Ann. Stat. 18(1), 405–414 (1990)

    MathSciNet  MATH  Google Scholar 

  25. Lovász, L., Vesztergombi, K., Wagner, U., Welzl, E.: Convex quadrilaterals and \(k\)-sets. In: Pach, J. (ed.) Towards a Theory of Geometric Graphs. Contemporary Mathematics, vol. 342, pp. 139–148. American Mathematical Society, Providence (2004)

    Google Scholar 

  26. Matoušek, J.: Lectures on Discrete Geometry. Graduate Texts in Mathematics, vol. 212. Springer, New York (2002)

  27. Montellano-Ballesteros, J.J., Strausz, R.: Counting polytopes via the Radon complex. J. Comb. Theory Ser. A 106(1), 109–121 (2004)

    MathSciNet  MATH  Google Scholar 

  28. Motzkin, Th.: Relations between hypersurface cross ratios, and a combinatorial formula for partitions of a polygon, for permanent preponderance, and for non-associative products. Bull. Am. Math. Soc. 54(4), 352–360 (1948)

  29. Palmer, E.M., Robinson, R.W.: Enumeration of self-dual configurations. Pac. J. Math. 110(1), 203–221 (1984)

    MathSciNet  MATH  Google Scholar 

  30. Randall, D., Rote, G., Santos, F., Snoeyink, J.: Counting triangulations and pseudo-triangulations of wheels. In: Proceedings of the 13th Canadian Conference on Computational Geometry, pp. 149–152 (2001)

  31. Rousseeuw, P.J., Ruts, I.: Bivariate location depth. J. R. Stat. Soc. Ser. C 45(4), 516–526 (1996)

    MATH  Google Scholar 

  32. Ruiz-Vargas, A.J., Welzl, E.: Crossing-free perfect matchings in wheel point sets. In: Loebl, M., Nešetřil, J., Thomas, R. (eds.) A Journey Through Discrete Mathematics: A Tribute to Jiří Matoušek, pp. 735–764. Springer, Cham (2017)

    Google Scholar 

  33. Sharir, M., Sheffer, A.: Counting triangulations of planar point sets. Electron. J. Comb. 18(1), Art. No. 70 (2011)

    MathSciNet  MATH  Google Scholar 

  34. Sharir, M., Welzl, E.: On the number of crossing-free matchings, cycles, and partitions. SIAM J. Comput. 36(3), 695–720 (2006)

    MathSciNet  MATH  Google Scholar 

  35. Sharir, M., Sheffer, A., Welzl, E.: Counting plane graphs: Perfect matchings, spanning cycles, and Kasteleyn’s technique. J. Comb. Theory Ser. A 120(4), 777–794 (2013)

    MathSciNet  MATH  Google Scholar 

  36. Stolfi, J.: Oriented Projective Geometry. Academic Press, Boston (1991)

    MATH  Google Scholar 

  37. Wagner, U.: On the rectilinear crossing number of complete graphs. In: Proceedings of the 14th Annual Symposium on Discrete Algorithms, pp. 583–588. ACM/SIAM, San Diego (2003)

  38. Wagner, U., Welzl, E.: A continuous analogue of the upper bound theorem. Discrete Comput. Geom. 26(2), 205–219 (2001)

    MathSciNet  MATH  Google Scholar 

  39. Welzl, E.: Entering and leaving \({j}\)-facets. Discrete Comput. Geom. 25(3), 351–364 (2001)

    MathSciNet  MATH  Google Scholar 

  40. Ziegler, G.M.: Lectures on Polytopes. Graduate Texts in Mathematics, vol. 152. Springer, New York (1995)

Download references

Acknowledgements

The first author acknowledges support by a Schrödinger fellowship of the Austrian Science Fund (FWF): J-3847-N35.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuel Wettstein.

Additional information

Editor in Charge: János Pach

Dedicated to the memory of Ricky Pollack.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pilz, A., Welzl, E. & Wettstein, M. From Crossing-Free Graphs on Wheel Sets to Embracing Simplices and Polytopes with Few Vertices. Discrete Comput Geom 64, 1067–1097 (2020). https://doi.org/10.1007/s00454-019-00147-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00454-019-00147-1

Keywords

Mathematics Subject Classification

Navigation