Skip to main content
Log in

Refined Topological Branes

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We study the open refined topological string amplitudes using the refined topological vertex. We determine the refinement of holonomies necessary to describe the boundary conditions of open amplitudes (which in particular satisfy the required integrality properties). We also derive the refined holonomies using the refined Chern–Simons theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. There is an alternative but equivalent approach to obtain the correct refined open amplitudes. We could keep the holonomies unrefined, but change instead the refined propagator. In this note, we take the former approach.

  2. The difference of exponents is due to opposite windings of holomorphic maps.

  3. The definition of the dual Schur function \(S_{\lambda }(V;q,t)\) is given in Eq. A.18 in the Appendix.

  4. This argument may look very mathematical without a strong physical principle behind, at least for the resolved conifold. In the next section, we give a more physical argument based on the refined Chern–Simons theory.

  5. If we set \(\mu _{L}\) and \(\mu _{R}\) to \(\emptyset \) in Eq. 4.3; in other words, turn off the holonomies, we obtain the closed topological string partition function.

  6. “Vertical” and “horizontal” directions refer to the associated toric diagram.

References

  1. Seiberg, N., Witten, E.: Electric-magnetic duality, monopole condensation, and confinement in \(N=2\) supersymmetric Yang–Mills theory. Nucl. Phys. B 426, 19–52 (1994). arXiv:hep-th/9407087. [Erratum: Nucl. Phys. B430, 485 (1994)]

  2. Seiberg, N., Witten, E.: Monopoles, duality and chiral symmetry breaking in \(N=2\) supersymmetric QCD. Nucl. Phys. B 431, 484–550 (1994). arXiv:hep-th/9408099

    Article  MathSciNet  Google Scholar 

  3. Katz, S.H., Klemm, A., Vafa, C.: Geometric engineering of quantum field theories. Nucl. Phys. B 497, 173–195 (1997). arXiv:hep-th/9609239

    Article  MathSciNet  ADS  Google Scholar 

  4. Katz, S.H., Vafa, C.: Geometric engineering of \(N=1\) quantum field theories. Nucl. Phys. B 497, 196–204 (1997). arXiv:hep-th/9611090

    Article  MathSciNet  Google Scholar 

  5. Bershadsky, M., Cecotti, S., Ooguri, H., Vafa, C.: Kodaira–Spencer theory of gravity and exact results for quantum string amplitudes. Commun. Math. Phys. 165, 311–428 (1994). arXiv:hep-th/9309140

    Article  MathSciNet  ADS  Google Scholar 

  6. Aganagic, M., Klemm, A., Marino, M., Vafa, C.: The topological vertex. Commun. Math. Phys. 254, 425–478 (2005). arXiv:hep-th/0305132

    Article  MathSciNet  ADS  Google Scholar 

  7. Iqbal, A.: All genus topological string amplitudes and five-brane webs as Feynman diagrams. arXiv:hep-th/0207114

  8. Awata, H., Kanno, H.: Instanton counting, Macdonald functions and the moduli space of D-branes. JHEP 05, 039 (2005). arXiv:hep-th/0502061

    Article  MathSciNet  ADS  Google Scholar 

  9. Iqbal, A., Kozçaz, C., Vafa, C.: The refined topological vertex. JHEP 10, 069 (2009). arXiv:hep-th/0701156

    Article  MathSciNet  ADS  Google Scholar 

  10. Kozcaz, C., Pasquetti, S., Wyllard, N.: A & B model approaches to surface operators and Toda theories. JHEP 08, 042 (2010). arXiv:1004.2025

    Article  MathSciNet  ADS  Google Scholar 

  11. Dimofte, T., Gukov, S., Hollands, L.: Vortex counting and Lagrangian 3-manifolds. Lett. Math. Phys. 98, 225–287 (2011). arXiv:1006.0977

    Article  MathSciNet  ADS  Google Scholar 

  12. Gopakumar, R., Vafa, C.: On the gauge theory/geometry correspondence. Adv. Theor. Math. Phys. 3, 1415–1443 (1999). arXiv:hep-th/9811131

    Article  MathSciNet  Google Scholar 

  13. Mori, H., Sugimoto, Y.: Surface operators from M-strings. Phys. Rev. D 95(2), 026001 (2017). arXiv:1608.02849

    Article  MathSciNet  ADS  Google Scholar 

  14. Kimura, T., Mori, H., Sugimoto, Y.: Refined geometric transition and \(qq\)-characters. JHEP 01, 025 (2018). arXiv:1705.03467

    Article  MathSciNet  Google Scholar 

  15. Kameyama, M., Nawata, S.: Refined large N duality for knots. arXiv:1703.05408

  16. Macdonald, I.G.: Symmetric Functions and Hall Polynomials, 2nd edn. Oxford Mathematical Monographs, Oxford Science Publications, Oxford (2015)

    MATH  Google Scholar 

  17. Hollowood, T.J., Iqbal, A., Vafa, C.: Matrix models, geometric engineering and elliptic genera. JHEP 03, 069 (2008). arXiv:hep-th/0310272

    Article  MathSciNet  ADS  Google Scholar 

  18. Ooguri, H., Vafa, C.: Knot invariants and topological strings. Nucl. Phys. B 577, 419–438 (2000). arXiv:hep-th/9912123

    Article  MathSciNet  ADS  Google Scholar 

  19. Labastida, J.M.F., Marino, M., Vafa, C.: Knots, links and branes at large N. JHEP 11, 007 (2000). arXiv:hep-th/0010102

    Article  MathSciNet  ADS  Google Scholar 

  20. Gopakumar, R., Vafa, C.: M theory and topological strings. 1. arXiv:hep-th/9809187

  21. Gopakumar, R., Vafa, C.: M theory and topological strings. 2. arXiv:hep-th/9812127

  22. Iqbal, A., Kozcaz, C.: Refined Hopf link revisited. JHEP 04, 046 (2012). arXiv:1111.0525

    Article  MathSciNet  ADS  Google Scholar 

  23. Aganagic, M., Shakirov, S.: Refined Chern–Simons theory and topological string. arXiv:1210.2733

  24. Aganagic, M., Vafa, C.: Mirror symmetry, D-branes and counting holomorphic discs. arXiv:hep-th/0012041

  25. Aganagic, M., Marino, M., Vafa, C.: All loop topological string amplitudes from Chern–Simons theory. Commun. Math. Phys. 247, 467–512 (2004). arXiv:hep-th/0206164

    Article  MathSciNet  ADS  Google Scholar 

  26. Aganagic, M., Shakirov, S.: Knot homology and refined Chern–Simons index. Commun. Math. Phys. 333(1), 187–228 (2015). arXiv:1105.5117

    Article  MathSciNet  ADS  Google Scholar 

  27. Vafa, C.: Brane anti-brane systems and U(N|M) supergroup. arXiv:hep-th/0101218

  28. Haghighat, B., Iqbal, A., Kozçaz, C., Lockhart, G., Vafa, C.: M-strings. Commun. Math. Phys. 334(2), 779–842 (2015). arXiv:1305.6322

    Article  ADS  Google Scholar 

  29. Nieri, F., Pasquetti, S.: Factorisation and holomorphic blocks in 4d. JHEP 11, 155 (2015). arXiv:1507.00261

    Article  MathSciNet  ADS  Google Scholar 

  30. Bullimore, M., Kim, H.-C., Koroteev, P.: Defects and quantum Seiberg–Witten geometry. JHEP 05, 095 (2015). arXiv:1412.6081

    Article  MathSciNet  ADS  Google Scholar 

  31. Alday, L.F., Gaiotto, D., Gukov, S., Tachikawa, Y., Verlinde, H.: Loop and surface operators in \(N=2\) gauge theory and Liouville modular geometry. JHEP 01, 113 (2010). arXiv:0909.0945

    Article  MathSciNet  Google Scholar 

  32. Kozcaz, C., Shakirov, S., Vafa, C., Yan, W.: work in progress

  33. Awata, H., Feigin, B., Shiraishi, J.: Quantum algebraic approach to refined topological vertex. JHEP 03, 041 (2012). arXiv:1112.6074

    Article  MathSciNet  ADS  Google Scholar 

Download references

Acknowledgements

We would like to thank Amer Iqbal and Shing-Tung Yau for useful discussions. The work of CK is supported by Department of Physics, Boğaziçi University and CMSA, Harvard University. CV is supported in part by NSF grant PHY-1067976. The work of WY is supported by YMSC, Tsinghua University and CMSA, Harvard University. The work of SS is partly supported by the RFBR Grant 16-02-01021.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenbin Yan.

Additional information

Communicated by S. Gukov

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appenix A: Useful Identities

Appenix A: Useful Identities

In this section, we collect some identities and background materials used in this note. We used the refined topological vertex to compute the open topological string amplitude which has the following explicit form,

$$\begin{aligned} C_{\lambda \mu \nu }(t,q)&=t^{-\frac{\Arrowvert \mu ^{t}\Arrowvert ^{2}}{2}-\frac{\Arrowvert \nu ^{t}\Arrowvert ^{2}}{2}} q^{\frac{\Arrowvert \mu \Arrowvert ^{2} }{2}+\frac{\Arrowvert \nu \Arrowvert ^{2}}{2}}P_{\nu }(t^{-\rho };q,t)\nonumber \\&\quad \sum _{\eta }v^{|\eta |+|\lambda |-|\mu |}s_{\lambda ^{t}/\eta }(q^{-\nu }t^{-\rho })s_{\mu /\eta }(t^{-\nu ^{t}}q^{-\rho }), \end{aligned}$$
(A.1)

where \(P_{\nu }(t^{-\rho };q,t)\) is the Macdonald polynomial at the special point \(x_{i}=t^{i-1/2}\), and \(s_{\lambda /\eta }\) is the skew Schur function, defined below. Moreover, we used the shorthand notation

$$\begin{aligned} \Arrowvert \lambda \Arrowvert ^2\equiv \sum _{i=1}^{\ell (\lambda )}\lambda _{i}^{2}. \end{aligned}$$
(A.2)

v is given by \(q^{1/2}t^{-1/2}\). We have also made use of the following identity:

$$\begin{aligned} P_{\nu }(t^{\rho };q,t)=(-1)^{|\nu |}q^{n(\nu ^{t})}t^{-n(\nu )}P_{\nu }(t^{-\rho };q,t). \end{aligned}$$
(A.3)

For completeness, let us remind the reader following identities that are frequently used in our computations,

$$\begin{aligned} n(\lambda )&=\sum _{i=1}^{\ell (\lambda )}(i-1)\lambda _{i}=\sum _{(i,j)\in \lambda }(\lambda ^{t}_{j}-i)=\sum _{(i,j)\in \lambda }(i-1)=\frac{\Arrowvert \lambda ^{t} \Arrowvert ^{2}}{2}-\frac{|\lambda |}{2} \end{aligned}$$
(A.4)
$$\begin{aligned} n(\lambda ^{t})&=\sum _{i=1}^{\ell (\lambda ^{t})}(i-1)\lambda ^{t}_{i}=\sum _{(i,j)\in \lambda ^{t}}(\lambda _{i}-j)=\sum _{(i,j)\in \lambda ^{t}}(j-1)=\frac{\Arrowvert \lambda \Arrowvert ^{2}}{2}-\frac{|\lambda |}{2}. \end{aligned}$$
(A.5)

In this paper, we showed that holonomies which are describing boundary conditions for open topological strings need to be modified in the refined case to ensure the integrality property. We argued that the naive modification from Schur functions to Macdonald functions does not capture the full story, and we need to include the dual Macdonald functions. Let us briefly recall the definition and some properties of them. Macdonald introduced a two-parameter extension of the usual inner product defined for powersum symmetric functions \(p_{\mu }\), which we call (qt)-inner product,

$$\begin{aligned} \langle p_{\lambda },p_{\mu }\rangle _{q,t}=\delta _{\lambda \mu }z_{\lambda }\prod _{i=1}^{\ell (\lambda )}\frac{1-q^{\lambda _{i}}}{1-t^{\lambda _{i}}}, \end{aligned}$$
(A.6)

where \(z_{\mu }\) is a combinatorial factor defined by

$$\begin{aligned} z_{\lambda }=\prod _{i\ge 1}i^{m_{i}}m_{i}!, \end{aligned}$$
(A.7)

with \(m_{i}=m_{i}(\lambda )\) being the number of rows in \(\lambda \) of length i. q and t parameters introduced in refined topological strings are same parameters as the ones introduced by Macdonald, and the unrefined case is when \(q=t\), the limit when the (qt)-inner product reduces to the usual inner product.

The dual Macdonald function \(Q_{\mu }(x;q,t)\) is defined as the dual symmetric function of the Macdonald function with respect to the (qt)-inner product:

$$\begin{aligned} \langle P_{\lambda },Q_{\mu }\rangle _{q,t}=\delta _{\lambda \mu }. \end{aligned}$$
(A.8)

There is a very nice relationship between the Macdonald polynomial \(P_{\mu }(x;q,t)\) and its dual \(Q_{\mu }(x;q,t)\):

$$\begin{aligned} Q_{\mu }(x;q,t)=b_{\mu }(q,t)P_{\mu }(x;q,t), \end{aligned}$$
(A.9)

where \(b_{\mu }(q,t)\) is the inverse of the algebraic norm square of the Macdonald polynomial,

$$\begin{aligned} b_{\mu }(q,t)=\frac{1}{\langle P_{\lambda },P_{\mu }\rangle _{q,t}}. \end{aligned}$$
(A.10)

Another useful approach to understand the duality is obtained by generalizing the involution \(\omega \) on the ring of symmetric functions similarly to depend on two parameters. Recall the action of \(\omega \) on powersums \(p_{\lambda }\),

$$\begin{aligned} \omega \, p_{\lambda }=\epsilon _{\lambda }\,p_{\lambda }, \end{aligned}$$
(A.11)

where \(\epsilon _{\lambda }=(-1)^{|\lambda |-\ell (\lambda )}\). The action of \(\omega \) on Schur function is particularly interesting,

$$\begin{aligned} \omega \,s_{\lambda }=s_{\lambda ^{t}}. \end{aligned}$$
(A.12)

The action of the two parameter version is defined compatible with the inner product,

$$\begin{aligned} \omega _{q,t}\,p_{\lambda }\equiv \epsilon _{\lambda }\,p_{\lambda }\prod _{i=1}^{\ell (\lambda )}\frac{1-q^{\lambda _{i}}}{1-t^{\lambda _{i}}}. \end{aligned}$$
(A.13)

The two parameter generalization of the involution \(\omega _{q,t}\) relates \(P_{\mu }\) and \(Q_{\mu }\) as

$$\begin{aligned} \omega _{q,t}\,P_{\mu }(x;q,t)&=Q_{\mu ^{t}}(x;t,q),\nonumber \\ \omega _{q,t}\,Q_{\mu }(x;q,t)&=P_{\mu ^{t}}(x;t,q). \end{aligned}$$
(A.14)

The above identities follow from the simple identity \(\omega _{t,q}=\omega _{q,t}^{-1}\).

On general grounds, we can easily show that the sum over all Young diagrams takes the following product form,

$$\begin{aligned} \sum _{\lambda }P_{\lambda }(x;q,t)Q_{\lambda }(y;q,t)=\Pi (x,y;q,t), \end{aligned}$$
(A.15)

where we have,

$$\begin{aligned} \Pi (x,y;q,t)=\omega _{t,q}\, \prod _{i,j}(1+x_{i}y_{j})=\exp \left( \sum _{n=1}^{\infty }\frac{1}{n}\frac{1-t^{n}}{1-q^{n}}p_{n}(x)p_{n}(y)\right) . \end{aligned}$$
(A.16)

In [33], the dual Schur function \(S_{\lambda }(x;q,t)\) is defined using the (qt)-inner product

$$\begin{aligned} \langle s_{\lambda },S_{\mu }\rangle _{q,t}=\delta _{\lambda \mu }. \end{aligned}$$
(A.17)

The dual Schur function can also be obtained similar to the case for the Macdonald function with the help of the refined involution \(\omega _{t,q}\),

$$\begin{aligned} S_{\lambda }(x;q,t)=\imath \omega _{t,q}\,s_{\lambda }(-x), \end{aligned}$$
(A.18)

and remember that \(\imath \) is another involution defined by it action on the powersum symmetric function \(\imath p_{\lambda }=-p_{\lambda }\). The Cauchy identity for the Schur and dual Schur function is (sum up to the same product as the Macdonald and the dual Macdonal function),

$$\begin{aligned} \sum _{\mu }s_{\mu }(x)S_{\mu }(y;q,t)=\Pi (x,y;q,t). \end{aligned}$$
(A.19)

Using Littlewood–Richardson coefficients determined by \(s_{\mu }s_{\nu }=\sum _{\lambda }N_{\mu \nu }^{\lambda }s_{\lambda }\), the skew (dual) Schur function are defined by,

$$\begin{aligned}&s_{\mu /\nu }(x)=\sum _{\lambda }N_{\nu \lambda }^{\mu }s_{\lambda }(x), \end{aligned}$$
(A.20)
$$\begin{aligned}&S_{\mu /\nu }(x;q,t)=\sum _{\lambda }N_{\nu \lambda }^{\mu }S_{\lambda }(x;q,t). \end{aligned}$$
(A.21)

The dual Schur functions satisfy similar to the Schur functions,

$$\begin{aligned} S_{\mu }(x,y;q,t)=\sum _{\lambda }S_{\mu /\lambda }(x;q,t)S_{\lambda }(y;q,t). \end{aligned}$$
(A.22)

The skew (dual) Macdonald function are defined after refining the Littlewood–Richardson coefficients which we denote by \({\widehat{N}}_{\nu \eta }^{\mu }(q,t)\). There are defined similar to Schur function using the Macdonald polynomials,

$$\begin{aligned} P_{\nu }(x;q,t)P_{\eta }(x;q,t)=\sum _{\mu }{\widehat{N}}_{\nu \eta }^{\mu }(q,t)P_{\mu }(x;q,t). \end{aligned}$$
(A.23)

We list the identities required for our computations without any proofs,

$$\begin{aligned} Q_{\mu /\nu }(x;q,t)&=\sum _{\eta }{\widehat{N}}_{\nu \eta }^{\mu }(q,t)Q_{\eta }(x;q,t), \end{aligned}$$
(A.24)
$$\begin{aligned} P_{\mu /\nu }(x;q,t)&=\sum _{\eta }{\widehat{N}}_{\nu ^{t}\eta ^{t}}^{\mu ^{t}}(t,q)P_{\eta }(x;q,t). \end{aligned}$$
(A.25)

The Cauchy identities are deformed a little bit once we include the skew functions,

$$\begin{aligned}&\sum _{\lambda }P_{\lambda }(x;q,t)Q_{\lambda /\mu }(y;q,t)=P_{\mu }(x;q,t)\Pi (x,y;q,t), \end{aligned}$$
(A.26)
$$\begin{aligned}&\sum _{\lambda }P_{\lambda ^{t}/\mu }(x;t,q)P_{\lambda }(y;q,t)=P_{\mu ^{t}}(y;q,t)\prod _{i,j}(1+x_{i}y_{j}). \end{aligned}$$
(A.27)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kozçaz, C., Shakirov, S., Vafa, C. et al. Refined Topological Branes. Commun. Math. Phys. 385, 937–961 (2021). https://doi.org/10.1007/s00220-020-03883-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-020-03883-1

Navigation