Skip to main content
Log in

Features of Preparation of Multilayer Ultrathin Coatings from Thermosetting Epoxy Amine Systems by Spin-Coating Technique

  • Published:
Colloid Journal Aims and scope Submit manuscript

Abstract

The basic factors influencing the quality of thin films prepared by the spin-coating technique from thermosetting stoichiometric epoxy-amine mixtures have been studied. It has been shown that films 2.5–3.0 nm thick are formed on silicon supports from a 0.025 wt % solution of the stoichiometric mixture of epoxy resin and amine in toluene. Multilayer polymer coatings with thickness up to 40 nm have been prepared from successively deposited partially cured epoxy-amine layers. The thickness of these coatings grows linearly with an increase in the number of layers, while their surface energy decreases. The revealed features may be used for creating multilayer polymer coatings, the properties of which vary along the coating thickness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Luchinin, V.V., Goloudina, S.I., Pasyuta, V.M., Panov, M.F., Gofman, I.V., Sklizkova, V.P., and Kudryavtsev, V.V., Pis’ma Zh. Tekh. Fiz., 2005, vol. 31, p. 57.

    Google Scholar 

  2. Stroeve, P., Spooner, G.J.R., Bruinsma, P.J., Coleman, L.B., Erdelen, C.H., and Ringsdorf, H., ACS Symp. Ser., 1991, vol. 447, p. 177.

    Article  Google Scholar 

  3. Bruinsma, P.J., Sturesson, C., Spooner, G.J.R., Coleman, L.B., and Stroeve, P., Polym. Prepr. (Am. Chem. Soc., Div. Polym. Chem.), 1991, vol. 32, p. 242.

  4. Bruinsma, P.J., Spooner, G.J.R., Coleman, L.B., Koren, R., Sturesson, C., and Stroeve, P., Thin Solid Films, 1992, vols. 210–211, p. 440.

    Article  Google Scholar 

  5. Carriere, P., Thesis HDR Defended, 2015.

  6. Arora, W.J., Tenhaeff, W.E., Gleason, K.K., and Barbastathis, G.J., Microelectromech. Syst., 2009, vol. 18, p. 97.

    Article  CAS  Google Scholar 

  7. Kang, T.J., Cha, M., Jang, E.Y., Shin, J., Im, H.U., Kim, Y., Lee, J., and Kim, Y.H., Adv. Mater. (Weinheim, Fed. Repub. Ger.), 2008, vol. 20, p. 3131.

  8. Zeng, T., Claus, R., Zhang, F., Du, W., and Cooper, K.L., Smart Mater. Struct., 2001, vol. 10, p. 780.

    Article  CAS  Google Scholar 

  9. Arslanov, V.V., Usp. Khim., 1994, vol. 63, p. 1.

    Article  Google Scholar 

  10. Kuan, S.W.J., Frank, C.W., Fu, C.C., Allee, D.R., Maccagno, P., and Pease, R.F.W., J. Vac. Sci. Technol. B, 1988, vol. 6, p. 2274.

    Article  CAS  Google Scholar 

  11. Hickel, W., Appel, G., Lupo, D., Prass, W., and Scheunemann, U., Thin Solid Films, 1992, vols. 210–211, p. 182.

    Article  Google Scholar 

  12. Wada K., Onodera T., Kasai H., Sato R., Takeda Y., Oi-kawa H. // Phys. Chem. C. 2019. V. 123. P. 25781.

  13. Hsiung, H., Rodriguez-Parada, J., and Bekerbauer, R., Chem. Phys. Lett., 1991, vol. 182, p. 88.

    Article  CAS  Google Scholar 

  14. Iler, R.K., J. Colloid Interface Sci., 1966, vol. 21, p. 569.

    Article  CAS  Google Scholar 

  15. Bukreeva, T.V, Parakhonskii, G.V., and Feigin, L.A., Struktura i dinamika molekulyarnykh sistem. XV Vseross. konf., Ioshkar-Ola, 2008, Sbornik statei, p. 6.

  16. Arslanov, V.V., Sheinina, L.S., and Kalinina, M.A., Zashch. Met., 2008, vol. 44, p. 5.

    Google Scholar 

  17. Letts, S.A. and Fort, T., J. Colloid Interface Sci., 1998, vol. 202, p. 341.

    Article  CAS  Google Scholar 

  18. Lee, B.-J. and Kunitake, T., Langmuir, 1994, vol. 10, p. 557.

    Article  CAS  Google Scholar 

  19. Chernova-Kharaeva, I.A., Extended Abstract of Cand. Sci. (Chem.) Dissertation, 2005.

  20. Arslanov, A.V., Sheinina, L.S., Bulgakova, R.A., and Belomestnykh, A.V., Kolloidn. Zh., 1994, vol. 56, p. 611.

    CAS  Google Scholar 

  21. Arslanov, V.V., Sheinina, L.S., and Bulgakova, R.A., Colloid J., 1997, vol. 59, p. 411.

    CAS  Google Scholar 

  22. Emsile, A.G., Bonner, F.T., and Peek, L.G., J. Appl. Phys., 1958, vol. 29, p. 858.

    Article  Google Scholar 

  23. Carriere, P., Onard, S., Martin, I., and Chailan, J.-F., J. Appl. Polym. Sci., 2015, Article 42078 (DOI: https://doi.org/10.1002/app.42078).10.1002/app

  24. Budkowski, A., Bernasik, A., Cyganik, P., Rysz, J., and Brenn, R., http://www.e-polymers.org/).

  25. Onard, S., Martin, I., Chailan, J.-F., Crespy, A., and Carriere, P., Macromolecules, 2011, vol. 44, p. 3485.

    Article  CAS  Google Scholar 

  26. Krasovskii, A.N., Kharlampiev, A.A., and Plodistyi, A.B., Russ. J. Appl. Chem., 1997, vol. 70, p. 632.

    Google Scholar 

  27. Veselovskii, R.A., Filippovich, A.Yu., and Khranovskii, V.A., Vysokomol. Soedin.,Ser. B, 1985, vol. 27, p. 497.

    CAS  Google Scholar 

  28. Li, C. and Strachan, A., Macromolecules, 2011, vol. 44, p. 9448.

    Article  CAS  Google Scholar 

  29. Zhavoronok, E.S., Senchikhin, I.N., Pchelintsev, I.E., and Roldughin, V.I., Polym. Sci., Ser. B, 2018, vol. 60, p. 188.

    Article  CAS  Google Scholar 

  30. Owens, D. and Wendt, R., J. Appl. Polym. Sci., 1969, vol. 13, p. 1741.

    Article  CAS  Google Scholar 

  31. Kaelble, D.H., J. Adhes., 1970, vol. 2, p. 66.

    Article  CAS  Google Scholar 

  32. Bauer, E., Z. Kristallogr., 1958, vol. 110, p. 372.

    Article  CAS  Google Scholar 

  33. Herman, M.A. and Sitter, H., Molecular Beam Epitaxy: Fundamentals and Current Status, .

  34. Fridrikhsberg, D.A., Kurs kolloidnoi khimii. 2-oe izd (Course of Colloid Chemistry, 2nd ed.), Leningrad: Khimiya, 1984.

  35. Zimon, A.D., Adgeziya zhidkosti i smachivanie (Adhesion of Liquid and Wetting), Moscow: Khimiya, 1974.

  36. https://tehtab.ru/Guide/GuidePhysics/SurfaceTension/SurfaceTensionLiquidsChT1/, data obrashcheniya: 27.04.2020.

  37. Askadskii, A.A. and Matveev, Yu.I., Khimicheskoe stroenie i fizicheskie svoistva polimerov (Chemical Structure and Physical Properties of Polymers), Moscow: Khimiya, 1983.

  38. Askadskii, A.A. and Kondrashchenko, V.I., Komp’yuternoe materialovedenie polimerov. T. 1. Atomno-molekulyarnyi uroven' (Computer Materials Science of Polymers. Vol. 1. Atomic–Molecular Level), Moscow: Nauchnyi Mir, 1999.

Download references

ACKNOWLEDGEMENTS

We are grateful to the Center for Collective Use of the Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Science, for the possibility to use the equipment in the experiments.

Funding

This work was supported by the Russian Science Foundation, project no. 18-79-00114.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. N. Senchikhin.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by L. Tkachenko

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Senchikhin, I.N., Zaitseva, A.V., Zakharova, V.A. et al. Features of Preparation of Multilayer Ultrathin Coatings from Thermosetting Epoxy Amine Systems by Spin-Coating Technique. Colloid J 82, 584–591 (2020). https://doi.org/10.1134/S1061933X20050166

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061933X20050166

Navigation