Skip to main content
Log in

Adsorption of carbon dioxide onto activated carbon prepared from lawn grass

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

In this work, activated carbon was synthesized from lawn grass via its physical treatment. The lawn grass was washed with hydrochloric acid solution before heat treatment step at different temperatures in the presence of carbon dioxide (CO2) gas. Activated carbon samples obtained from heat treatment process and raw grass samples were completely analyzed using scanning electron microscopy (SEM), thermogravimetric analyzer (TGA), Fourier transforms infrared (FTIR) spectroscopic, and X-ray diffraction (XRD). The surface area of activated carbon resulted from heat treatment of lawn grass in the presence of CO2 was higher, i.e., 208 m2/g, as compared to raw grass, i.e., 0.0068 m2/g. The adsorption capacity was highest (i.e. 0.12 mmol/g at 25 °C and 1 bar for CO2 adsorption) for activated carbon sample prepared at 750 °C. Therefore, activated carbon prepared from heat treatment of lawn grass can be a viable option for pollutants removal by using this low cost and effective adsorbent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Rethinasabapathy M, Han J, Chul K, Kang S (2020) Silver grass-derived activated carbon with coexisting micro-, meso- and macropores as excellent bioanodes for microbial colonization and power generation in sustainable microbial fuel cells. Bioresour Technol 300:122646. https://doi.org/10.1016/j.biortech.2019.122646

  2. Charnkeitkong P, Phoophuangpairoj R (2020) Modification of Manila grass activated carbon for reactive dye adsorption from textile printing wastewater modification of Manila grass activated carbon for reactive dye adsorption from textile printing wastewater. In: IOP Conference Series: Materials Science and Engineering. pp 1–8

  3. Mesfer MK Al (2020) Synthesis and characterization of high-performance activated carbon from walnut shell biomass for CO2 capture. Environ Sci Pollut Res 1–9. https://doi.org/10.1007/s11356-020-07934-x RESEARCH ARTICLE Synthesis

  4. Tu B, Wen R, Wang K, Cheng Y, Deng Y, Cao W, Zhang K, Tao H (2020) Efficient removal of aqueous hexavalent chromium by activated carbon derived from Bermuda grass. J Colloid Interface Sci 560:649–658. https://doi.org/10.1016/j.jcis.2019.10.103

    Article  Google Scholar 

  5. Kalyani P, Anitha A, Darchen A (2013) Activated carbon from grass - a green alternative catalyst support for water electrolysis. Int J Hydrog Energy 38:10364–10372. https://doi.org/10.1016/j.ijhydene.2013.06.022

    Article  Google Scholar 

  6. Xu J, Chen L, Qu H, Jiao Y, Xie J, Xing G (2014) Preparation and characterization of activated carbon from reedy grass leaves by chemical activation with H3PO4. Appl Surf Sci 320:674–680. https://doi.org/10.1016/j.apsusc.2014.08.178

    Article  Google Scholar 

  7. Saka C (2012) BET, TG-DTG, FT-IR, SEM, iodine number analysis and preparation of activated carbon from acorn shell by chemical activation with ZnCl2. J Anal Appl Pyrolysis 95:21–24. https://doi.org/10.1016/j.jaap.2011.12.020

    Article  Google Scholar 

  8. Gupta VK, Gupta B, Rastogi A, Agarwal S, Nayak A (2011) Pesticides removal from waste water by activated carbon prepared from waste rubber tire. Water Res 45:4047–4055. https://doi.org/10.1016/j.watres.2011.05.016

    Article  Google Scholar 

  9. Kilic M, Apaydin-Varol E, Pütün AE (2011) Adsorptive removal of phenol from aqueous solutions on activated carbon prepared from tobacco residues: equilibrium, kinetics and thermodynamics. J Hazard Mater 189:397–403. https://doi.org/10.1016/j.jhazmat.2011.02.051

    Article  Google Scholar 

  10. Hoseinzadeh Hesas R, Wan Daud WMA, Sahu JN, Arami-Niya A (2013) The effects of a microwave heating method on the production of activated carbon from agricultural waste: a review. J Anal Appl Pyrolysis 100:1–11. https://doi.org/10.1016/j.jaap.2012.12.019

    Article  Google Scholar 

  11. Bedin KC, Martins AC, Cazetta AL, Pezoti O, Almeida VC (2016) KOH-activated carbon prepared from sucrose spherical carbon: adsorption equilibrium, kinetic and thermodynamic studies for methylene blue removal. Chem Eng J 286:476–484. https://doi.org/10.1016/j.cej.2015.10.099

    Article  Google Scholar 

  12. Antoniou N, Stavropoulos G, Zabaniotou A (2014) Activation of end of life tyres pyrolytic char for enhancing viability of pyrolysis - critical review, analysis and recommendations for a hybrid dual system. Renew Sust Energ Rev 39:1053–1073. https://doi.org/10.1016/j.rser.2014.07.143

    Article  Google Scholar 

  13. Ali R, Aslam Z, Shawabkeh RA et al (2020) BET, FTIR and RAMAN characterizations of activated carbon from waste oil fly ash. Turkish J Chem 44:279–295. https://doi.org/10.3906/kim-1909-20

    Article  Google Scholar 

  14. Bouchelta C, Salah M, Bertrand O (2008) Bellat J. Preparation and characterization of activated carbon from date stones by physical activation with steam 82:70–77. https://doi.org/10.1016/j.jaap.2007.12.009

    Article  Google Scholar 

  15. Nabais JMV, Laginhas C, Carrott MMLR, Carrott PJM, Amorós JEC, Gisbert AVN (2013) Surface and porous characterisation of activated carbons made from a novel biomass precursor, the esparto grass. Appl Surf Sci 265:919–924. https://doi.org/10.1016/j.apsusc.2012.11.164

    Article  Google Scholar 

  16. Aslam Z, Hussein IA, Shawabkeh RA, Parvez MA, Ahmad W, Ihsanullah (2019) Adsorption kinetics and modeling of H2S by treated waste oil fly ash. J Air Waste Manag Assoc 69:246–257. https://doi.org/10.1080/10962247.2018.1536004

    Article  Google Scholar 

  17. Ukanwa KS, Patchigolla K, Sakrabani R, Anthony E, Mandavgane S (2019) A review of chemicals to produce activated carbon from agricultural waste biomass. Sustain 11:1–35. https://doi.org/10.3390/su11226204

    Article  Google Scholar 

  18. Oginni O, Singh K, Oporto G, Dawson-Andoh B, McDonald L, Sabolsky E (2019) Influence of one-step and two-step KOH activation on activated carbon characteristics. Bioresour Technol Reports 7:100266. https://doi.org/10.1016/j.biteb.2019.100266

    Article  Google Scholar 

  19. Ahmed MB, Hasan Johir MA, Zhou JL, Ngo HH, Nghiem LD, Richardson C, Moni MA, Bryant MR (2019) Activated carbon preparation from biomass feedstock: clean production and carbon dioxide adsorption. J Clean Prod 225:405–413. https://doi.org/10.1016/j.jclepro.2019.03.342

    Article  Google Scholar 

  20. Shawabkeh RA, Aslam Z, Hussien IA (2015) Thermochemical treatment of fly ash for synthesis of mesoporous activated carbon. J Therm Anal Calorim 122:1191–1201. https://doi.org/10.1007/s10973-015-4964-7

    Article  Google Scholar 

  21. Veeramani V, Sivakumar M, Chen SM, Madhu R, Alamri HR, Alothman ZA, Hossain MSA, Chen CK, Yamauchi Y, Miyamoto N, Wu KCW (2017) Lignocellulosic biomass-derived, graphene sheet-like porous activated carbon for electrochemical supercapacitor and catechin sensing. RSC Adv 7:45668–45675. https://doi.org/10.1039/c7ra07810b

    Article  Google Scholar 

  22. Contescu C, Adhikari S, Gallego N, Evans N, Biss B (2018) Activated carbons derived from high-temperature pyrolysis of lignocellulosic biomass. J Carbon Res 4:1–16. https://doi.org/10.3390/c4030051

    Article  Google Scholar 

  23. González-García P (2018) Activated carbon from lignocellulosics precursors: a review of the synthesis methods, characterization techniques and applications. Renew Sust Energ Rev 82:1393–1414. https://doi.org/10.1016/j.rser.2017.04.117

    Article  Google Scholar 

  24. Zahir A, Aslam Z, Aslam U, et al (2020) Paspalum notatum grass-waste-based adsorbent for rhodamine B removal from polluted water. Chem Biochem Eng Q 34:93–104. https://doi.org/10.15255/CABEQ.2020.1830

  25. Zhao C, Fan X, Hou X, Zhu Y, Yue Y, Wu J (2017) Extended light exposure increases stem digestibility and biomass production of switchgrass. PLoS One 12:1–17. https://doi.org/10.1371/journal.pone.0188349

    Article  Google Scholar 

  26. Mohapatra S, Samparana S, Prerna M, Hrudayanath B (2019) Engineering grass biomass for sustainable and enhanced bioethanol production. Planta 250:395–412. https://doi.org/10.1007/s00425-019-03218-y

    Article  Google Scholar 

  27. Xu F, Yu J, Tesso T, Dowell F, Wang D (2013) Qualitative and quantitative analysis of lignocellulosic biomass using infrared techniques : a mini-review. Appl Energy 104:801–809. https://doi.org/10.1016/j.apenergy.2012.12.019

    Article  Google Scholar 

  28. Gil M, Pasieczna-Patkowska S, Nowicki P (2019) Application of microwave heating in the preparation of functionalized activated carbons. Adsorption 25:327–336. https://doi.org/10.1007/s10450-019-00017-5

    Article  Google Scholar 

  29. Jawad AH, Ismail K, Ishak MAM, Wilson LD (2019) Conversion of Malaysian low-rank coal to mesoporous activated carbon: structure characterization and adsorption properties. Chinese J Chem Eng 27:1716–1727. https://doi.org/10.1016/j.cjche.2018.12.006

    Article  Google Scholar 

  30. Wu S, He H, Li X, Yang C, Zeng G, Wu B, He S, Lu L (2018) Insights into atrazine degradation by persulfate activation using composite of nanoscale zero-valent iron and graphene: performances and mechanisms. Chem Eng J 341:126–136. https://doi.org/10.1016/j.cej.2018.01.136

    Article  Google Scholar 

  31. Das A, Rahimi A, Ulbrich A, Alherech M, Motagamwala AH, Bhalla A, da Costa Sousa L, Balan V, Dumesic JA, Hegg EL, Dale BE, Ralph J, Coon JJ, Stahl SS (2018) Lignin conversion to low-molecular-weight aromatics via an aerobic oxidation-hydrolysis sequence: comparison of different lignin sources. ACS Sustain Chem Eng 6:3367–3374. https://doi.org/10.1021/acssuschemeng.7b03541

    Article  Google Scholar 

  32. Deuss PJ, Scott M, Tran F, Westwood NJ, de Vries JG, Barta K (2015) Aromatic monomers by in situ conversion of reactive intermediates in the acid-catalyzed depolymerization of lignin. J Am Chem Soc 137:7456–7467. https://doi.org/10.1021/jacs.5b03693

    Article  Google Scholar 

  33. Cazetta AL, Vargas AMM, Nogami EM, Kunita MH, Guilherme MR, Martins AC, Silva TL, Moraes JCG, Almeida VC (2011) NaOH-activated carbon of high surface area produced from coconut shell: kinetics and equilibrium studies from the methylene blue adsorption. Chem Eng J 174:117–125. https://doi.org/10.1016/j.cej.2011.08.058

    Article  Google Scholar 

  34. Su F, Lu C, Hu S (2010) Adsorption of benzene, toluene, ethylbenzene and p-xylene by NaOCl-oxidized carbon nanotubes. Colloids Surfaces A Physicochem Eng Asp 353:83–91. https://doi.org/10.1016/j.colsurfa.2009.10.025

    Article  Google Scholar 

  35. Carrier M, Loppinet-serani A, Denux D, Lasnier J (2011) Thermogravimetric analysis as a new method to determine the lignocellulosic composition of biomass. Biomass Bioenergy 35:298–307. https://doi.org/10.1016/j.biombioe.2010.08.067

    Article  Google Scholar 

  36. Sait HH, Hussain A, Adam A, Nasir F (2012) Pyrolysis and combustion kinetics of date palm biomass using thermogravimetric analysis. Bioresour Technol 118:382–389. https://doi.org/10.1016/j.biortech.2012.04.081

    Article  Google Scholar 

  37. Villaseñor J, Sánchez P, Valverde JL (2012) Thermogravimetric – mass spectrometric analysis of lignocellulosic and marine biomass pyrolysis. Bioresour Technol 109:163–172. https://doi.org/10.1016/j.biortech.2012.01.001

    Article  Google Scholar 

  38. Sanchez-Silva L, López-González D, Villaseñor J, Sánchez P, Valverde JL (2012) Thermogravimetric-mass spectrometric analysis of lignocellulosic and marine biomass pyrolysis. Bioresour Technol 109:163–172. https://doi.org/10.1016/j.biortech.2012.01.001

    Article  Google Scholar 

  39. Zahir A, Aslam Z, Kamal MS, Ahmad W, Abbas A, Shawabkeh RA (2017) Development of novel cross-linked chitosan for the removal of anionic Congo red dye. J Mol Liq 244:211–218. https://doi.org/10.1016/j.molliq.2017.09.006

    Article  Google Scholar 

  40. Kumar A, Jena HM (2015) High surface area microporous activated carbons prepared from fox nut (Euryale ferox) shell by zinc chloride activation. Appl Surf Sci 356:753–761. https://doi.org/10.1016/j.apsusc.2015.08.074

    Article  Google Scholar 

  41. Claoston N, Samsuri AW, Ahmad Husni MH, Mohd Amran MS (2014) Effects of pyrolysis temperature on the physicochemical properties of empty fruit bunch and rice husk biochars. Waste Manag Res 32:331–339. https://doi.org/10.1177/0734242X14525822

    Article  Google Scholar 

  42. Keiluweit M, Nico PS, Johnson MG (2010) Dynamic molecular structure of plant biomass-derived black carbon(biochar). Environ Sci Technol 44:1247–1253. https://doi.org/10.1021/es9031419

    Article  Google Scholar 

  43. Pereira SC, Maehara L, Machado CMM, Farinas CS (2016) Physical-chemical-morphological characterization of the whole sugarcane lignocellulosic biomass used for 2G ethanol production by spectroscopy and microscopy techniques. Renew Energy 87:607–617. https://doi.org/10.1016/j.renene.2015.10.054

    Article  Google Scholar 

  44. Tan H, Wang S (2010) Experimental study of the effect of acid-washing pretreatment on biomass pyrolysis. J Fuel Chem Technol 37:668–672. https://doi.org/10.1016/s1872-5813(10)60014-x

    Article  Google Scholar 

  45. Contescu CI, Adhikari SP, Gallego NC, Evans N, Biss B (2018) Activated carbons derived from high-temperature pyrolysis of lignocellulosic biomass. J Carbon Res 4:1–16. https://doi.org/10.3390/c4030051

    Article  Google Scholar 

  46. Mohamad Nor N, Lau LC, Lee KT, Mohamed AR (2013) Synthesis of activated carbon from lignocellulosic biomass and its applications in air pollution control - a review. J Environ Chem Eng 1:658–666. https://doi.org/10.1016/j.jece.2013.09.017

    Article  Google Scholar 

  47. Ioannidou O, Zabaniotou A (2007) Agricultural residues as precursors for activated carbon production-a review. Renew Sust Energ Rev 11:1966–2005. https://doi.org/10.1016/j.rser.2006.03.013

    Article  Google Scholar 

  48. Li M, Xiao R (2019) Preparation of a dual pore structure activated carbon from rice husk char as an adsorbent for CO2 capture. Fuel Process Technol 186:35–39. https://doi.org/10.1016/j.fuproc.2018.12.015

    Article  Google Scholar 

  49. Kim MJ, Choi SW, Kim H, Mun S, Lee KB (2020) Simple synthesis of spent coffee ground-based microporous carbons using K2CO3 as an activation agent and their application to CO2 capture. Chem Eng J 397:125404. https://doi.org/10.1016/j.cej.2020.125404

    Article  Google Scholar 

  50. Teague CM, Schott JA, Stieber C, Mann ZE, Zhang P, Williamson BR, Dai S, Mahurin SM (2019) Microporous and hollow carbon spheres derived from soft drinks: promising CO2 separation materials. Microporous Mesoporous Mater 286:199–206. https://doi.org/10.1016/j.micromeso.2019.04.017

    Article  Google Scholar 

  51. Huang GG, Liu YF, Wu XX, Cai JJ (2019) Activated carbons prepared by the KOH activation of a hydrochar from garlic peel and their CO2 adsorption performance. Xinxing Tan Cailiao/New Carbon Mater 34:247–257. https://doi.org/10.1016/S1872-5805(19)60014-4

    Article  Google Scholar 

  52. Heo YJ, Park SJ (2015) A role of steam activation on CO2 capture and separation of narrow microporous carbons produced from cellulose fibers. Energy 91:142–150. https://doi.org/10.1016/j.energy.2015.08.033

    Article  Google Scholar 

  53. Yang H, Gong M, Chen Y (2011) Preparation of activated carbons and their adsorption properties for greenhouse gases: CH4 and CO2. J Nat Gas Chem 20:460–464. https://doi.org/10.1016/S1003-9953(10)60232-0

    Article  Google Scholar 

  54. Chiang YC, Hsu WL, Lin SY, Juang RS (2017) Enhanced CO2 adsorption on activated carbon fibers grafted with nitrogen-doped carbon nanotubes. Materials (Basel) 10:1–12. https://doi.org/10.3390/ma10050511

    Article  Google Scholar 

Download references

Acknowledgments

Authors acknowledge the Department of Chemical Engineering, University of Engineering and Technology, Lahore, Pakistan, for providing the funding and facilities to conduct this research.

Code availability

Not applicable.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zaheer Aslam.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aslam, Z., Anait, U., Abbas, A. et al. Adsorption of carbon dioxide onto activated carbon prepared from lawn grass. Biomass Conv. Bioref. 12, 3121–3131 (2022). https://doi.org/10.1007/s13399-020-01029-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13399-020-01029-w

Keywords

Navigation