Skip to main content

Advertisement

Log in

Investigation of Silphium perfoliatum as Feedstock for a Liquid Hot Water–Based Biorefinery Process Towards 2,3-Butanediol

  • Published:
BioEnergy Research Aims and scope Submit manuscript

Abstract

The aim of the present study was to generate a consistent data set for biorefinery intermediates from novel energy crop Silphium perfoliatum compared with Fagus sylvatica, including process streams from liquid hot water pretreatment, enzymatic hydrolysis, and fermentation with Bacillus licheniformis. The consistency of the data set was further supported by the application of a consistent analytical method based on high performance anion exchange chromatography with pulsed amperometric detection and validated for process intermediates, which renders the technique a versatile analytical tool also for alcoholic compounds. For the first time, Silphium perfoliatum was used for liquid hot water pretreatment which resulted in a maximal absolute glucose recovery after enzymatic hydrolysis for feedstock pretreated with 200 °C, 20 min, 20% solid loading. Under these conditions, 68% glucose were recovered for Silphium perfoliatum and 62% for Fagus sylvatica. Further, enzymatic hydrolyzates of both feedstocks were successfully used as single carbon sources for 2,3-butanediol fermentation with Bacillus licheniformis resulting in a 2,3-butanediol yield of 39% and 31% of the theoretical yield for Silphium perfoliatum and Fagus sylvatica, respectively. Thus, the technical suitability of Silphium perfoliatum as feedstock for a liquid hot water–based biorefinery process was comprehensively demonstrated and successfully bore the comparison with Fagus sylvatica.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

Not applicable

References

  1. Metz B, Davidson OR, Bosch PR, Dave R, Meyer LA (2007) Climate change 2007: mitigation of the climate change. Cambridge University Press www.ipcc.ch/site/assets/uploads/2018/03/ar4_wg3_full_report-1.pdf. Accessed 23 August 2020

  2. Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt K, Tignor MMB, Miller HL (2007) Climate change 2007: the physical science basis. Cambridge University Press www.ipcc.ch/site/assets/uploads/2018/05/ar4_wg1_full_report-1.pdf. Accessed 23 August 2020

  3. van Wyk JP (2001) Biotechnology and the utilization of biowaste as a resource for bioproduct development. 5. Trends Biotechnol 19:172–177. https://doi.org/10.1016/S0167-7799(01)01601-8

    Article  PubMed  Google Scholar 

  4. Neumerkel W, Martin B (1982) Silphium (Silphium perfoliatum L) - a new feed plant. Arch Acker Pfl Boden 26:261–271

    Google Scholar 

  5. Gansberger M, Montgomery LFR, Liebhard P (2015) Botanical characteristics, crop management and potential of Silphium perfoliatum L. as a renewable resource for biogas production: a review. Ind Crop Prod 63:362–372. https://doi.org/10.1016/j.indcrop.2014.09.047

    Article  Google Scholar 

  6. Wever C, Höller M, Becker L, Biertümpfel A, Köhler J, van Inghelandt D, Westhoff P, Pude R, Pestsova E (2019) Towards high-biomass yielding bioenergy crop Silphium perfoliatum L.: phenotypic and genotypic evaluation of five cultivated populations. Biomass Bioenergy 124:102–113. https://doi.org/10.1016/j.biombioe.2019.03.016

    Article  Google Scholar 

  7. Sokolov VS, Gritsak ZI (1972) Silphium – a valuable fodder and nectariferous crop. World Crops 24(6):299–301

    Google Scholar 

  8. Deim F, Mayr J, Liebhard P (2014) Silphium Perfoliatum L. - eine Alternative in der Produktion nachwachsender Rohstoffe in Österreich. Mitt Ges Pflanzenbauwiss 26:114–115

    Google Scholar 

  9. Tomaszewska-Sowa M, Figas A (2011) Optimisation of the processes of sterilization and micropropagation of cup plants (Silphium perfoliatum L.) from apical explants of seedlings in in vitro cultures. Acta Agrobot 64(4):3–10. https://doi.org/10.5586/aa.2011.041

    Article  Google Scholar 

  10. Mosier NS, Wyman C, Dale B, Elander R, Lee Y, Holtzapple M, Ladisch M (2005) Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour Technol 96(6):673–686. https://doi.org/10.1016/j.biortech.2004.06.025

    Article  CAS  PubMed  Google Scholar 

  11. Pérez JA, Ballesteros I, Ballesteros M, Sáez F, Negro MJ, Manzanares P (2008) Optimizing liquid hot water pretreatment conditions to enhance monosaccharide recovery from wheat straw for fuel-ethanol production. Fuel 87(17):3640–3647. https://doi.org/10.1016/j.fuel.2008.06.009

    Article  CAS  Google Scholar 

  12. Pedersen M, Viksø-Nielsen A, Meyer AS (2010) Monosaccharide yields and lignin removal from wheat straw in response to catalyst type and pH during mild thermal pretreatment. Process Biochem 45(7):1181–1186. https://doi.org/10.1016/j.procbio.2010.03.020

    Article  CAS  Google Scholar 

  13. Ruiz HA, Conrad M, Sun S-N, Sanchez A, Rocha GJM, Romaní A, Castro E, Torres A, Rodríguez-Jasso RM, Andrade LP, Smirnova I, Sun R-C, Meyer AS (2019) Engineering aspects of hydrothermal pretreatment: from batch to continuous operation, scale-up and pilot reactor under biorefinery concept. Bioresour Technol 299:122685. https://doi.org/10.1016/j.biortech.2019.122685

    Article  CAS  PubMed  Google Scholar 

  14. Ruiz HA, Silva DP, Ruzene DS, Lima LF, Vicente AA, Teixeira JA (2012) Bioethanol production from hydrothermal pretreated wheat straw by a flocculating Saccharomyces cerevisiae strain – effect of process conditions. Fuel 95:528–536. https://doi.org/10.1016/j.fuel.2011.10.060

    Article  CAS  Google Scholar 

  15. Ruiz HA, Rodríguez-Jasso RM, Fernandes BD, Vicente AA, Teixeira JA (2013) Hydrothermal processing, as an alternative for upgrading agriculture residues and marine biomass according to the biorefinery concept: a review. Renew Sust Energ Rev 21:35–51. https://doi.org/10.1016/j.rser.2012.11.069

    Article  CAS  Google Scholar 

  16. Sun S-L, Sun S-N, Wen J-L, Zhang X-M, Peng F, Sun R-C (2015) Assessment of integrated process based on hydrothermal and alkaline treatments for enzymatic saccharification of sweet sorghum stems. Bioresour Technol 175:473–479. https://doi.org/10.1016/j.biortech.2014.10.111

    Article  CAS  PubMed  Google Scholar 

  17. Xiao X, Bian J, Li M-F, Xu H, Xiao B, Sun RC (2014) Enhanced enzymatic hydrolysis of bamboo (Dendrocalamus giganteus Munro) culm by hydrothermal pretreatment. Bioresour Technol 159:41–47. https://doi.org/10.1016/j.biortech.2014.02.096

    Article  CAS  PubMed  Google Scholar 

  18. Li M, Cao S, Meng X, Studer M, Wyman CE, Ragauskas AJ, Pu Y (2017) The effect of liquid hot water pretreatment on the chemical–structural alteration and the reduced recalcitrance in poplar. Biotechnol Biofuels 10(1):237. https://doi.org/10.1186/s13068-017-0926-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ma XJ, Cao SL, Lin L, Luo XL, Hu HC, Chen LH, Huang LL (2013) Hydrothermal pretreatment of bamboo and cellulose degradation. Bioresour Technol 148:408–413. https://doi.org/10.1016/j.biortech.2013.09.021

    Article  CAS  PubMed  Google Scholar 

  20. Agbor VB, Cicek N, Sparling R, Berlin A, Levin DB (2011) Biomass pretreatment: fundamentals toward application. Biotechnol Adv 29(6):675–685. https://doi.org/10.1016/j.biotechadv.2011.05.005

    Article  CAS  PubMed  Google Scholar 

  21. Wang Z-W, Zhu M-Q, Li M-F, Wang J-Q, Wei Q, Sun R-C (2016) Comprehensive evaluation of the liquid fraction during the hydrothermal treatment of rapeseed straw. Biotechnol Biofuels 9(1):142. https://doi.org/10.1186/s13068-016-0552-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Chen X, Li H, Sun S, Cao X, Sun R (2018) Co-production of oligosaccharides and fermentable sugar from wheat straw by hydrothermal pretreatment combined with alkaline ethanol extraction. Ind Crop Prod 111:78–85. https://doi.org/10.1016/j.indcrop.2017.10.014

    Article  CAS  Google Scholar 

  23. Pu Y, Hu F, Huang F, Davison BH, Ragauskas AJ (2013) Assessing the molecular structure basis for biomass recalcitrance during dilute acid and hydrothermal pretreatments. Biotechnol Biofuels 6:15. https://doi.org/10.1186/1754-6834-6-15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Donohoe BS, Decker SR, Tucker MP, Himmel ME, Vinzant TB (2008) Visualizing lignin coalescence and migration through maize cell walls following thermochemical pretreatment. Biotechnol Bioeng 101(5):913–925. https://doi.org/10.1002/bit.21959

    Article  CAS  PubMed  Google Scholar 

  25. Selig MJ, Viamajala S, Decker SR, Tucker MP, Himmel ME, Vinzant TB (2007) Deposition of lignin droplets produced during dilute acid pretreatment of maize stems retards enzymatic hydrolysis of cellulose. Biotechnol Prog 23(6):1333–1339. https://doi.org/10.1021/bp0702018

    Article  CAS  PubMed  Google Scholar 

  26. Ruiz HA, Ruzene DS, Silva DP, Quintas MAC, Vicente AA, Teixeira JA (2010) Evaluation of a hydrothermal process for pretreatment of wheat straw-effect of particle size and process conditions. J Chem Technol Biotechnol 86(1):88–94. https://doi.org/10.1002/jctb.2518

    Article  CAS  Google Scholar 

  27. Hu F, Jung S, Ragauskas A (2012) Pseudo-lignin formation and its impact on enzymatic hydrolysis. Bioresour Technol 117:7–12. https://doi.org/10.1016/j.biortech.2012.04.037

    Article  CAS  PubMed  Google Scholar 

  28. Pino MS, Rodríguez-Jasso RM, Michelin M, Ruiz HA (2019) Enhancement and modeling of enzymatic hydrolysis on cellulose from Agave bagasse hydrothermally pretreated in a horizontal bioreactor. Carbohydr Polym 211:349–359. https://doi.org/10.1016/j.carbpol.2019.01.111

    Article  CAS  PubMed  Google Scholar 

  29. Klein-Marcuschamer D, Oleskowicz-Popiel P, Simmons BA, Blanch HW (2012) The challenge of enzyme cost in the production of lignocellulosic biofuels. Biotechnol Bioeng 109(4):1083–1087. https://doi.org/10.1002/bit.24370

    Article  CAS  PubMed  Google Scholar 

  30. Kim S, Dale BE (2004) Global potential bioethanol production from wasted crops and crop residues. Biomass Bioenergy 26(4):361–375. https://doi.org/10.1016/j.biombioe.2003.08.002

    Article  Google Scholar 

  31. Bozell JJ, Petersen GR (2010) Technology development for the production of biobased products from biorefinery carbohydrates—the US Department of Energy’s “Top 10” revisited. Green Chem 12(4):539–554. https://doi.org/10.1039/b922014c

    Article  CAS  Google Scholar 

  32. Jang Y, Kim B, Shin JH, Choi YJ, Choi S, Song CW, Lee J, Park GH, Lee YS (2012) Bio-based production of C2–C6 platform chemicals. Biotechnol Bioeng 109(10):2437–2459. https://doi.org/10.1002/bit.24599

    Article  CAS  PubMed  Google Scholar 

  33. Häßler T, Schieder D, Pfaller R, Faulstich M, Sieber V (2012) Enhanced fed-batch fermentation of 2,3-butanediol by Paenibacillus polymyxa DSM 365. Bioresour Technol 124:237–244. https://doi.org/10.1016/j.biortech.2012.08.047

    Article  CAS  PubMed  Google Scholar 

  34. Ma K, He M, You H, Pan L, Wanga Z, Wang Y, Hu G, Cui Y, Maeda T (2018) Improvement of (R,R)-2,3-butanediol production from corn stover hydrolysate by cell recycling continuous fermentation. Chem Eng J 332:361–369. https://doi.org/10.1016/j.cej.2017.09.097

    Article  CAS  Google Scholar 

  35. Hazeena SH, Salini NC, Sindhu R, Pandey A, Binod P (2019) Simultaneous saccharification and fermentation of oil palm front for the production of 2,3-butanediol. Bioresour Technol 278:145–149. https://doi.org/10.1016/j.biortech.2019.01.042

    Article  CAS  PubMed  Google Scholar 

  36. Jurchescu I, Hamann J, Zhou X, Ortmann T, Kuenz A, Prüße U, Lang S (2013) Enhanced 2,3-butanediol production in fed-batch cultures of free and immobilized Bacillus licheniformis DSM 8785. Appl Microbiol Biotechnol 97(15):6715–6723. https://doi.org/10.1007/s00253-013-4981-z

    Article  CAS  PubMed  Google Scholar 

  37. Celińska E, Grajek W (2009) Biotechnological production of 2,3-butanediol—current state and prospects. Biotechnol Adv 27(6):715–725. https://doi.org/10.1016/j.biotechadv.2009.05.002

    Article  CAS  PubMed  Google Scholar 

  38. Xiao Z, Lu JR (2014) Strategies for enhancing fermentative production of acetoin: a review. Biotechnol Adv 32(2):492–503. https://doi.org/10.1016/j.biotechadv.2014.01.002

    Article  CAS  PubMed  Google Scholar 

  39. Song K, Chu Q, Hu J, Bu Q, Li F, Chen X, Shi A (2019) Two-stage alkali-oxygen pretreatment capable of improving biomass saccharification for bioethanol production and enabling lignin valorization via adsorbents for heavy metal ions under the biorefinery concept. Bioresour Technol 276:161–169. https://doi.org/10.1016/j.biortech.2018.12.107

    Article  CAS  PubMed  Google Scholar 

  40. Penín L, Peleteiro S, Santos V, Alonso JL, Parajo JC (2018) Selective fractionation and enzymatic hydrolysis of Eucalyptus nitens wood. Cellulose 26(2):1125–1139. https://doi.org/10.1007/s10570-018-2109-4

    Article  CAS  Google Scholar 

  41. Xing Y, Bu L, Zheng T, Liu S, Jiang J (2016) Enhancement of high-solids enzymatic hydrolysis of corncob residues by bisulfite pretreatment for biorefinery. Bioresour Technol 221:461–468. https://doi.org/10.1016/j.biortech.2016.09.086

    Article  CAS  PubMed  Google Scholar 

  42. Viell J, Wulfhorst H, Schmidt T, Commandeur U, Fischer R, Spiess AC, Marquardt W (2013) An efficient process for the saccharification of wood chips by combined ionic liquid pretreatment and enzymatic hydrolysis. Bioresour Technol 146:144–151. https://doi.org/10.1016/j.biortech.2013.07.059

    Article  CAS  PubMed  Google Scholar 

  43. Regestein L, Klement T, Grande P, Kreyenschulte D, Heyman B, Maßmann T, Eggert A, Sengpiel R, Wang Y, Wierckx N, Blank LM, Spiess AC, Leitner W, Bolm C, Wessling M, Jupke A, Rosenbaum M, Büchs J (2018) From beech wood to itaconic acid: case study on biorefinery process integration. Biotechnol Biofuels 11:279. https://doi.org/10.1186/s13068-018-1273-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Grande PM, Viell J, Theyssen N, Marquardt W, Domínguez de María P, Leitner W (2015) Fractionation of lignocellulosic biomass using the OrganoCat process. Green Chem 17(6):3533–3539. https://doi.org/10.1039/c4gc02534b

    Article  CAS  Google Scholar 

  45. Garrote G, Domínguez H, Parajó JC (1999) Mild autohydrolysis: an environmentally friendly technology for xylooligosaccharide production from wood. J Chem Technol Biotechnol 74(11):1101–1109. https://doi.org/10.1002/(SICI)1097-4660(199911)74:11<1101::AID-JCTB146>3.0.CO;2-M

    Article  CAS  Google Scholar 

  46. Laure S, Leschinsky M, Fröhling M, Schultmann F, Unkelbach G (2014) Assessment of an organosolv lignocellulose biorefinery concept based on a material flow analysis of a pilot plant. Cellul Chem Technol 48(9-10):793–798

    CAS  Google Scholar 

  47. Michels J, Wagemann K (2010) The German lignocellulose feedstock biorefinery project. Biofuels Bioprod Biorefin 4(3):263–267. https://doi.org/10.1002/bbb.216

    Article  CAS  Google Scholar 

  48. Miazek K, Remacle C, Richel A, Goffin D (2017) Beech wood Fagus sylvatica dilute-acid hydrolysate as a feedstock to support Chlorella sorokiniana biomass, fatty acid and pigment production. Bioresour Technol 230:122–131. https://doi.org/10.1016/j.biortech.2017.01.034

    Article  CAS  PubMed  Google Scholar 

  49. Budzinski M, Nitzsche R (2016) Comparative economic and environmental assessment of four beech wood based biorefinery concepts. Bioresour Technol 216:613–621. https://doi.org/10.1016/j.biortech.2016.05.111

    Article  CAS  PubMed  Google Scholar 

  50. Dieter M, Englert H, Klein M (2001) Abschätzung des Rohholzpotentials für die energetische Nutzung in der Bundesrepublik Deutschland. Bundesforschungsanstalt für Forst- und Holzwirtschaft, Institut für Ökonomie. literatur.thuenen.de/digbib_extern/bitv/dk040192.pdf. Accessed 24 August 2020

  51. Luo G, Talebnia F, Karakashev D, Xie L, Zhou Q, Angelidaki I (2011) Enhanced bioenergy recovery from rapeseed plant in a biorefinery concept. Bioresour Technol 102:1433–1439. https://doi.org/10.1016/j.biortech.2010.09.071

    Article  CAS  PubMed  Google Scholar 

  52. Kaparaju P, Serrano M, Thomsen AB, Kongjan P, Angelidaki I (2009) Bioethanol, biohydrogen and biogas production from wheat straw in a biorefinery concept. Bioresour Technol 100:2562–2568. https://doi.org/10.1016/j.biortech.2008.11.011

    Article  CAS  PubMed  Google Scholar 

  53. Klinke HB, Ahring BK, Schmidt AS, Thomsen AB (2002) Characterization of degradation products from alkaline wet oxidation of wheat straw. Bioresour Technol 82(1):15–26. https://doi.org/10.1016/S0960-8524(01)00152-3

    Article  CAS  PubMed  Google Scholar 

  54. Anders N, Humann H, Langhans B, Spiess AC (2015) Simultaneous determination of acid-soluble biomass-derived compounds using high performance anion exchange chromatography coupled with pulsed amperometric detection. Anal Methods 7:7866–7873. https://doi.org/10.1039/C5AY01371B

    Article  CAS  Google Scholar 

  55. Épshtein NA (2004) Validation of HPLC techniques for pharmaceutical analysis. Pharm Chem J 38(4):212–228. https://doi.org/10.1023/B:PHAC.0000038422.27193.6c

    Article  Google Scholar 

  56. Sluiter A, Hamas B, Ruiz R, Scarlata C, Sluiter J, Templeton D, Crocker D (2008) Determination of structural carbohydrates and lignin in biomass. Laboratory Analytical Procedures, Technical Report NREL/TP-510–42618. www.nrel.gov/docs/gen/fy13/42618.pdf. Accessed 24 August 2020

  57. Overend RP, Chornet E (1987) Fractionation of lignocellulosics by steamaqueous pretreatments. Philos Trans R Soc London Ser A 321:523–536. https://doi.org/10.1098/rsta.1987.0029

    Article  CAS  Google Scholar 

  58. Adney B, Baker J (1996) Measurement of cellulase activities. Laboratory Analytical Procedure, Technical Report NREL/TP-510-42628. www.nrel.gov/docs/gen/fy08/42628.pdf. Accessed 24 August 2020

  59. Nakashimada Y, Kanai K, Nishio N (1998) Optimization of dilution rate, pH and oxygen supply on optical purity of 2, 3-butanediol produced by Paenibacillus polymyxa in chemostat culture. Biotechnol Lett 20(12):1133–1138. https://doi.org/10.1023/A:1005324403186

    Article  CAS  Google Scholar 

  60. Heyman B, Lamm R, Tulke H, Regestein L, Büchs J (2019) Shake flask methodology for assessing the influence of the maximum oxygen transfer capacity on 2,3-butanediol production. Microb Cell Factories 18:78. https://doi.org/10.1186/s12934-019-1126-9

    Article  Google Scholar 

  61. Heyman B, Tulke H, Putri SP, Fukusaki E, Büchs J (2020) Online monitoring of the respiratory quotient reveals metabolic phases during microaerobic 2,3-butanediol production with Bacillus licheniformis. Eng Life Sci 20:133–144. https://doi.org/10.1002/elsc.201900121

    Article  CAS  PubMed  Google Scholar 

  62. Wandrey GB (2017) Light-mediated control and analysis of recombinant protein production in microscale cultivations. Dissertation, RWTH Aachen University

  63. Cürten C, Anders N, Juchem N, Ihling N, Volkenborn K, Knapp A, Jaeger K, Büchs J, Spiess AC (2018) Fast automated online xylanase activity assay using HPAEC-PAD. Anal Bioanal Chem 410(1):57–69. https://doi.org/10.1007/s00216-017-0712-0

    Article  CAS  PubMed  Google Scholar 

  64. Anders N, Schelden M, Roth S, Spiess AC (2017) Automated chromatographic laccase-mediator-system activity assay. Anal Bioanal Chem 409(20):4801–4809. https://doi.org/10.1007/s00216-017-0423-6

    Article  CAS  PubMed  Google Scholar 

  65. Schulz M, Filary B, Kühn S, Colby T, Harzen A, Schmidt J, Sicker D, Hennig L, Hofmann D, Disko U, Anders N (2016) Benzoxazolinone detoxification by N-glucosylation: the multi-compartment-network of Zea mays L. Plant Signal Behav 11(1):e1119962. https://doi.org/10.1080/15592324.2015.1119962

    Article  CAS  PubMed  Google Scholar 

  66. Hanko VP, Rohrer JS (2000) Determination of carbohydrates, sugar alcohols, and glycols in cell cultures and fermentation broths using high-performance anion-exchange chromatography with pulsed amperometric detection. Anal Biochem 283(2):192–199. https://doi.org/10.1006/abio.2000.4653

    Article  CAS  PubMed  Google Scholar 

  67. Chang KC, Dhurandhar N, You X, Miyamoto A (1994) Cultivar/location and processing methods affect yield and quality of sunflower pectin. J Food Sci 59(3):602–605. https://doi.org/10.1111/j.1365-2621.1994.tb05572.x

    Article  Google Scholar 

  68. Miyamoto A, Chang KC (1992) Extraction and physicochemical characterization of pectin from sunflower head residues. J Food Sci 57(6):1439–1443. https://doi.org/10.1111/j.1365-2621.1992.tb06878.x

    Article  CAS  Google Scholar 

  69. Leitao MCA, Alado Silva ML, Januiriob MIN, Azinheira HG (1995) Galacturonic acid in pectic substances of sunflower head residues: quantitative determination by HPLC. Carbohydr Polym 26(3):165–169. https://doi.org/10.1016/0144-8617(95)00003-P

    Article  CAS  Google Scholar 

  70. Jing Q, Lü X (2008) Kinetics of non-catalyzed decomposition of glucose in high-temperature liquid water. Chin J Chem Eng 16(6):890–894. https://doi.org/10.1016/S1004-9541(09)60012-4

    Article  CAS  Google Scholar 

  71. Larsson S, Palmqvist E, Hahn-Hägerdal B, Tengborg C, Stenberg K, Zacchi G, Nilvebrant N (1999) The generation of fermentation inhibitors during dilute acid hydrolysis of softwood. Enzym Microb Technol 24(3-4):151–159. https://doi.org/10.1016/S0141-0229(98)00101-X

    Article  CAS  Google Scholar 

  72. Thomasser C, Danner H, Neureiter M, Saidi B, Braun R (2002) Thermophilic fermentation of hydrolysates – the effect of inhibitors on growth of thermophilic bacteria. Appl Biochem Biotechnol 98-100(1-9):765–773. https://doi.org/10.1385/ABAB:98-100:1-9:765

    Article  CAS  PubMed  Google Scholar 

  73. Fang Q, Hanna MA (2002) Experimental studies for levulinic acid production from whole kernel grain sorghum. Bioresour Technol 81(3):187–192. https://doi.org/10.1016/S0960-8524(01)00144-4

    Article  CAS  PubMed  Google Scholar 

  74. Mussatto SI, Fernandes M, Milagres AMF, Roberto IC (2008) Effect of hemicellulose and lignin on enzymatic hydrolysis of cellulose from brewer’s spent grain. Enzym Microb Technol 43(2):124–129. https://doi.org/10.1016/j.enzmictec.2007.11.006

    Article  CAS  Google Scholar 

  75. Vázquez G, Antorrena G, Gonzfilez J, Freire S, López S (1997) Acetosolv pulping of pine wood. Kinetic modelling of lignin solubilization and condensation. Bioresour Technol 59(2-3):121–127. https://doi.org/10.1016/S0960-8524(96)00168-X

    Article  Google Scholar 

  76. Parajo LC, Alonso JL, Santos V (1995) Kinetics of catalyzed organosolv processing of pine wood. Ind Eng Chem Res 34:4333–4342. https://doi.org/10.1021/ie00039a025

    Article  CAS  Google Scholar 

  77. Zhang X, Zhu J, Sun L, Yuan Q, Cheng G, Argyropoulos DS (2019) Extraction and characterization of lignin from corncob residue after acid-catalyzed steam explosion pretreatment. Ind Crop Prod 133:241–249. https://doi.org/10.1016/j.indcrop.2019.03.027

    Article  CAS  Google Scholar 

  78. Author not applicable (2007) Complex carbohydrate analysis: enzymes, kits and reagents. Sigma-Aldrich 2(3). www.sigmaaldrich.com/content/dam/sigma-aldrich/docs/Sigma/General_Information/carbohydrate_analysis_bf8.pdf. Accessed 12 December 2019

  79. Author not applicable (2017) Enzyme product brochure. Megazyme. www.megazyme.com/media/pdf/77/12/18/enzyme-product-guide_compressed.pdf. Accessed 12 December 2019

  80. Chernoglazov VM, Ermolova OV, Klyosov AA (1988) Adsorption of high-purity endo-1,4-b-glucanases from Trichoderma reesei on components of lignocellulosic materials: cellulose, lignin, and xylan. Enzym Microb Technol 10(8):503–507. https://doi.org/10.1016/0141-0229(88)90029-4

    Article  CAS  Google Scholar 

  81. Converse AO, Ooshima H, Burns DS (1990) Kinetics of enzymatic hydrolysis of lignocellulosic materials based on surface area of cellulose accessible to enzyme and enzyme adsorption on lignin and cellulose. Appl Biochem Biotechnol 24:67–73. https://doi.org/10.1007/BF02920234

    Article  Google Scholar 

  82. Ooshima H, Burns D, Converse AO (1990) Adsorption of cellulase from Trichoderma reesei on cellulose and lignacious residue in wood pretreated by dilute sulfuric acid with explosive decompression. Biotechnol Bioeng 36(5):446–452. https://doi.org/10.1002/bit.260360503

    Article  CAS  PubMed  Google Scholar 

  83. Mooney CA, Mansfield SD, Touhy MG, Saddler JN (1998) The effect of initial pore volume and lignin content of the enzymatic hydrolysis of softwoods. Bioresour Technol 64(2):113–119. https://doi.org/10.1016/S0960-8524(97)00181-8

    Article  CAS  Google Scholar 

  84. Modenbach AA, Nokes SE (2013) Enzymatic hydrolysis of biomass at high-solids loadings – a review. Biomass Bioenergy 56:526–544. https://doi.org/10.1016/j.biombioe.2013.05.031

    Article  CAS  Google Scholar 

  85. Jørgensen H, Kristensen JB, Felby C (2007) Enzymatic conversion of lignocellulose into fermentable sugars: challenges and opportunities. Biofuels Bioprod Biorefin 1:119–134. https://doi.org/10.1002/bbb.4

    Article  CAS  Google Scholar 

  86. Larsen J, Petersen MO, Thirup L, Li HW, Iversen FK (2008) The IBUS process-lignocellulosic bioethanol close to a commercial reality. Chem Eng Technol 31(5):765–772. https://doi.org/10.1002/ceat.200800048

    Article  CAS  Google Scholar 

  87. Qing Q, Yang B, Wyman CE (2010) Xylooligomers are strong inhibitors of cellulose hydrolysis by enzymes. Bioresour Technol 101(24):9624–9630. https://doi.org/10.1016/j.biortech.2010.06.137

  88. Damm T, Grande PM, Jablonowski ND, Thiele B, Disko U, Mann U, Schurr U, Leitner W, Usadel B, Domínguez de María P, Klose H (2017) OrganoCat pretreatment of perennial plants: synergies between a biogenic fractionation and valuable feedstocks. Bioresour Technol 244(1):889–896. https://doi.org/10.1016/j.biortech.2017.08.027

    Article  CAS  PubMed  Google Scholar 

  89. Voloch M, Jansen NB, Ladisch MR, Tsao GT, Narayan R, Rodwell VW (1985) 2,3- Butanediol. In: Moo-Young M (ed) Comprehensive biotechnoiogy: the principles, applications and regulations of biotechnology in industry, agriculture and medicine. Pergamon, Oxford, pp 933–947

    Google Scholar 

  90. Guragaina YN, Chittab D, Karanjikarc M, Vadlania PV (2017) Appropriate lignocellulosic biomass processing strategies for efficient 2,3-butanediol production from biomass-derived sugars using Bacillus licheniformis DSM 8785. Food Bioprod Process 104:147–158. https://doi.org/10.1016/j.fbp.2017.05.010

    Article  CAS  Google Scholar 

  91. Klement T, Milker S, Jäger G, Grande PM, Domínguez de María P, Büchs J (2012) Biomass pretreatment affects Ustilago maydis in producing itaconic acid. Microb Cell Factories 11:43. https://doi.org/10.1186/1475-2859-11-43

    Article  CAS  Google Scholar 

  92. Converti A, Perego P, Del Borghi M (2003) Effect of specific oxygen uptake rate on Enterobacter aerogenes energetics: carbon and reduction degree balances in batch cultivations. Biotechnol Bioeng 82:370–377. https://doi.org/10.1002/bit.10570

    Article  CAS  PubMed  Google Scholar 

  93. Rebecchi S, Pinelli D, Zanaroli G, Fava F, Frascari D (2018) Effect of oxygen mass transfer rate on the production of 2,3-butanediol from glucose and agro-industrial byproducts by Bacillus licheniformis ATCC9789. Biotechnol Biofuels 11:145. https://doi.org/10.1186/s13068-018-1138-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Kim Y, Mosier NS, Ladisch MR (2009) Enzymatic digestion of liquid hot water pretreated hybrid poplar. Biotechnol Prog 25(2):340–348. https://doi.org/10.1002/btpr.137

    Article  CAS  PubMed  Google Scholar 

  95. Aguilar DL, Rodríguez-Jasso RM, Zanuso E, de Rodríguez DJ, Amaya-Delgado L, Sanchez A, Ruiz HA (2018) Scale-up and evaluation of hydrothermal pretreatment in isothermal and non-isothermal regimen for bioethanol production using agave bagasse. Bioresour Technol 263:112–119. https://doi.org/10.1016/j.biortech.2018.04.100

    Article  CAS  PubMed  Google Scholar 

  96. Ko JK, Kim Y, Ximenes E, Ladisch MR (2014) Effect of liquid hot water pretreatment severity on properties of hardwood lignin and enzymatic hydrolysis of cellulose. Biotechnol Bioeng 112(2):252–262. https://doi.org/10.1002/bit.25349

    Article  CAS  PubMed  Google Scholar 

  97. Wang Q, Chen T, Zhao X, Chamu J (2012) Metabolic engineering of thermophilic Bacillus licheniformis for chiral pure D-2,3-butanediol production. Biotechnol Bioeng 109(7):1610–1621. https://doi.org/10.1002/bit.24427

    Article  CAS  PubMed  Google Scholar 

  98. Moes J, Griot M, Keller J, Heinzle E, Dunn IJ, Bourne JR (1985) A microbial culture with oxygen-sensitive product distribution as a potential tool for characterizing bioreactor oxygen transport. Biotechnol Bioeng 27(4):482–489. https://doi.org/10.1002/bit.260270413

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was part of the Silphium Perfoliatum Resource Evaluation And Development (SPREAD) project and was financially supported by the Bioeconomic science center (BioSC). The BioSC is supported by the state of North Rhine-Westphalia (NRW), Germany, on a long-term basis within the framework of the NRW-Strategieprojekt BioSC. Further, a section of this work was performed as part of the Cluster of Excellence “Tailor-Made Fuels from Biomass” (TMFB), which is funded by the Excellence Initiative of the German federal and state governments to promote science and research at German universities. A part of this study was performed within the project “Exchange for Teaching and Research between Aachen and Tunis” (Ex-TRAcT), in cooperation with the Private University of Tunis (Tunisia), and was founded by the program German-Arab short-term measures as part of the German-Arab Transformation Partnership of the German Academic Exchange Service (DAAD).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antje C. Spiess.

Ethics declarations

Conflicts of Interest

The authors declare that they have no conflict of interest.

Ethics Approval

Not applicable

Consent to Participate

Not applicable

Consent for Publication

Not applicable

Code Availability

Not applicable

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

ESM 1

(PDF 294 kb).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lunze, A., Heyman, B., Chammakhi, Y. et al. Investigation of Silphium perfoliatum as Feedstock for a Liquid Hot Water–Based Biorefinery Process Towards 2,3-Butanediol. Bioenerg. Res. 14, 799–814 (2021). https://doi.org/10.1007/s12155-020-10194-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12155-020-10194-9

Keywords

Navigation