Skip to main content
Log in

Lubricants and Coupling Agents in the Processes of the Liquid-Phase Modification of the Surface of Carbon and Glass Fiber Fillers in the Production of Structural Materials: A Review

  • TECHNOLOGY OF POLYMERIC AND COMPOSITE MATERIALS
  • Published:
Theoretical Foundations of Chemical Engineering Aims and scope Submit manuscript

Abstract

This review considers the major approaches used in the application of coupling agents and lubricants onto fiber. It is shown that the use of lubricants and coupling agents in the matrix–filler system of carbon and glass fiber-reinforced plastics (GFRPs and CFRPs) provides the required level of interfacial interaction. For polymer composite materials, the maximum positive effect is achieved by controlling the ratio of the functional groups on the surface of the fiber. It has been found that nitrogen-containing modifiers should be used for the formation of the optimum composition of the surface of a fiber with the predominance of amino and hydroxyl groups. The considered methods of modification of the surface of the fiber will make it possible to improve the quality of the polymer composite materials being developed due to the increase in the adhesive interaction of their components.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Beider, E.Ya., Petrova, G.N., Izotova, T.F., and Barbot’ko, S.L., Glass reinforced plastics based on a thermoplastic matrix, Tr. Vseross. Nauchno-Issled. Inst. Aviats. Mater., 2013, no. 7, article no. 03.

  2. Beider, E.Ya., Petrova, G.N., Izotova, T.F., and Gureeva, E.V., Thermoplastic composite materials and polyimide foams, Tr. Vseross. Nauchno-Issled. Inst. Aviats. Mater., 2013, no. 11, article no. 01.

  3. Kablov, E.N., Innovative developments at the All-Russian Scientific Research Institute of Aviation Materials on implementing “Strategic Directions in the Development of Materials and Technologies for Processing Them for the Period until 2030”, Aviats. Mater. Tekhnol., 2015, no. 1 (34), pp. 3–33.

  4. Gunyaev, G.M., Chursova, L.V., Komarova, O.A., and Gunyaeva, A.G., Structural carbon fiber reinforced plastics (CFRP) modified by nanoparticles, Aviats. Mater. Tekhnol., 2012, no. S, pp. 277–286.

  5. Kablov, E.N., Aerospace materials science, Vse Mater., 2008, no. 3, pp. 2–14.

  6. Sorokin, A.E., Beider, E.Ya., and Perfilova, D.N., Effect of climatic factors on the properties of a carbon fiber reinforced plastic based on a polyphenylene sulfide binding material, Tr. Vseross. Nauchno-Issled. Inst. Aviats. Mater., 2015, no. 1, article no. 10.

  7. Kablov, E.N., Startsev, O.V., Deev, I.S., and Nikishin, E.F., Properties of polymeric composite materials after the effect of outer space in near-Earth orbits: Part 1, Vse Mater., 2012, no. 10, pp. 2–9.

  8. Matveeva, I.G. and Lebedev, M.P., Polymer composite materials based on basalt, Theor. Found. Chem. Eng., 2018, vol. 52, pp. 670–672. https://doi.org/10.1134/S0040579518040206

    Article  CAS  Google Scholar 

  9. Sidorov, D.V. and Shcherbakova, G.I., High-technology components of composite materials and special fibers for a wide range of applications, Khim. Tekhnol., 2016, vol. 17, no. 4, pp. 183–192.

    Google Scholar 

  10. Kerber, M.L., Vinogradov, V.M., Golovkin, G.S., Gorbatkina, Yu.A., Kryzhanovskii, V.K., Kuperman, A.M., Simonov-Emel’yanov, I.D., Khaliulin, V.I., and Bunakov, V.A., Polimernye kompozitsionnye materialy. Struktura. Svoistva. Tekhnologiya. Uchebnoe posobie (Polymeric Composite Materials: Structure, Properties, and Technology: A Textbook), St. Petersburg: Professiya, 2014, 4th ed.

  11. Sharma, M., Gao, S., Mäder, E., Sharma, H., Wei, L.Y., and Bijwe, J., Carbon fiber surfaces and composite interphases, Compos. Sci. Technol., 2014, vol. 102, pp. 35–50. https://doi.org/10.1016/j.compscitech.2014.07.005

    Article  CAS  Google Scholar 

  12. Mizerovskii, L.N., Improved spin finish for synthetic fibres: A new approach to solving the problem, Fibre Chem., 2000, vol. 32, no. 3, pp. 221–226. https://doi.org/10.1007/BF02361065

    Article  CAS  Google Scholar 

  13. Golovkin, G.S., Specific features of the regulation of the mechanical properties of reinforced thermoplastics, Plast. Massy, 2008, no. 12, pp. 3–8.

  14. Thomason, J.L. and Adzima, L.J., Sizing up the interphase: An insider’s guide to the science of sizing, Composites, Part A, 2001, vol. 32, nos. 3–4, pp. 313–321. https://doi.org/10.1016/S1359-835X(00)00124-X

    Article  Google Scholar 

  15. Weitzsacker, C.L., Bellamy, M., and Sherwood, P.M.A., Studies of the effect of size on carbon fiber surfaces, J. Vac. Sci. Technol., A, 1994, vol. 12, no. 4, pp. 2392–2397. https://doi.org/10.1116/1.579220

    Article  CAS  Google Scholar 

  16. Mizerovskii, L.N., Improved spin finish for synthetic fibres: A new approach to solving the problem, Fibre Chem., 2000, vol. 32, no. 3, pp. 221–226. https://doi.org/10.1007/BF02361065

    Article  CAS  Google Scholar 

  17. Ivashchenko, E.A., Sizing and finishing agents for basalt and glass fibers, Theor. Found. Chem. Eng., 2009, vol. 43, pp. 511–516. https://doi.org/10.1134/S0040579509040277

    Article  CAS  Google Scholar 

  18. Druzhinina, T.V., Grebennikov, S.F., Kharchenko, I.M., Kobrakov, K.I., and Efimenkov, R.G., The role of pyrolytic additives in the formation of the porous structure of activated carbon fibers, Khim. Tekhnol., 2009, vol. 10, no. 1, pp. 21–25.

    Google Scholar 

  19. Weitzsacker, C.L., Bellamy, M., and Sherwood, P.M.A., Studies of the effect of size on carbon fiber surfaces, J. Vac. Sci. Technol., A, 1994, vol. 12, no. 4, pp. 2392–2397. https://doi.org/10.1116/1.579220

    Article  CAS  Google Scholar 

  20. Cheng, T.H, Zhang, J., Yumitori, S., Jones, F.R., and Anderson, C.W., Sizing resin structure and interphase formation in carbon fibre composites, Composites, 1994, vol. 25, no. 7, pp. 661–670. https://doi.org/10.1016/0010-4361(94)90199-6

    Article  CAS  Google Scholar 

  21. Dai, Z., Zhang, B., Shi, F., Li, M., Zhang, Z., and Gu, Y., Chemical interaction between carbon fibers and surface sizing, J. App. Polym. Sci., 2012, vol. 124, no. 3, pp. 2127–2132. https://doi.org/10.1002/app.35226

    Article  CAS  Google Scholar 

  22. Dilsiz, N. and Wightman, J.P., Surface analysis of unsized and sized carbon fibers, Carbon, 1999, vol. 37, no. 7, pp. 1105–1114. https://doi.org/10.1016/S0008-6223(98)00300-5

    Article  CAS  Google Scholar 

  23. Dilsiz, N. and Wightman, J.P., Effect of acid–base properties of unsized and sized carbon fibers on fiber/epoxy matrix adhesion, Colloids Surf., A, 2000, vol. 164, nos. 2–3, pp. 325–336. https://doi.org/10.1016/S0927-7757(99)00400-8

    Article  CAS  Google Scholar 

  24. Liu, J., Ge, H., Chen, J., Wang, D., and Liu, H., The preparation of emulsion type sizing agent for carbon fiber and the properties of carbon fiber/vinyl ester resin composites, J. App. Polym. Sci., 2012, vol. 124, no. 1, pp. 864–872. https://doi.org/10.1002/app.35126

    Article  CAS  Google Scholar 

  25. Allred, R.E., Wesson, S.P., Shin, E.E., Inghram, L., McCorkle, L., Papadopoulos, D., Wheeler, D., and Sutter, J.K., The influence of sizings on the durability of high-temperature polymer composites, High Perform. Polym., 2003, vol. 15, no. 4, pp. 395–419. https://doi.org/10.1177/09540083030154002

    Article  CAS  Google Scholar 

  26. Fernández, B., Arbelaiz, A., Valea, A., Mujika, F., and Mondragon, I., A comparative study on the influence of epoxy sizings on the mechanical performance of woven carbon fiber-epoxy composites, Polym. Compos., 2004, vol. 25, no. 3, pp. 319–330. https://doi.org/10.1002/pc.20026

    Article  CAS  Google Scholar 

  27. Jones, F.R., The chemical aspects of fibre surfaces and composite interfaces and interphases, and their influence on the mechanical behaviour of interfaces, Proc. 28th Risø International Symposium on Materials Science “Interface Design of Polymer Matrix Composites – Mechanics, Chemistry, Modelling and Manufacturing”, Sørensen, B.F., Mikkelsen, L.P., Lilholt, H., Goutianos, S., and Abdul-Mahdi, F.S., Eds., Roskilde: Risø National Laboratory, 2007, pp. 21–44.

  28. Jones, F.R., A review of interphase formation and design in fibre-reinforced composites, J. Adhes. Sci. Technol., 2010, vol. 24, no. 1, pp. 171–202. https://doi.org/10.1163/016942409X12579497420609

    Article  CAS  Google Scholar 

  29. Yumitori, S., Wang, D., and Jones, F.R., The role of sizing resins in carbon fibre-reinforced polyethersulfone (PES), Composites, 1994, vol. 25, no. 7, pp. 698–705. https://doi.org/10.1016/0010-4361(94)90204-6

    Article  CAS  Google Scholar 

  30. Clarke, W.A. and Eitman, D.A., US Patent 5562966, 1996.

  31. Kettle, A.P., Beck, A.J., O’Toole, L., Jones, F.R., and Short, R.D., Plasma polymerisation for molecular engineering of carbon-fibre surfaces for optimized composites, Compos. Sci. Technol., 1997, vol. 57, no. 8, pp. 1023–1032. https://doi.org/10.1016/S0266-3538(96)00162-5

    Article  CAS  Google Scholar 

  32. Zinger, B., Shkolnik, S., and Höcker, H., Electrocoating of carbon fibres with polyaniline and poly(hydroxyalkyl methacrylates), Polymer, 1989, vol. 30, no. 4, pp. 628–635. https://doi.org/10.1016/0032-3861(89)90146-8

    Article  CAS  Google Scholar 

  33. Huang, S., Huang, B., Zhou, K., and Li, Z., Effects of coatings on the mechanical properties of carbon fiber reinforced HAP composites, Mater. Lett., 2004, vol. 58, pp. 3582–3585. https://doi.org/10.1016/j.matlet.2004.05.086

    Article  CAS  Google Scholar 

  34. Li, J., Fan, Q., Chen, Z.H., Huang, K.B., and Cheng, Y.L., Effect of electropolymer sizing of carbon fiber on mechanical properties of phenolic resin composites, Trans. Nonferrous Met. Soc. China, 2006, vol. 16, suppl. 2, pp. s457–s461. https://doi.org/10.1016/S1003-6326(06)60233-1

    Article  Google Scholar 

  35. Zhang, C.H., Zhang, Z.Q., and Cao, H.L., Effects of epoxy/SiO2 hybrid sizing on the mechanical properties of carbon fiber composites, Solid State Phenom., 2007, vols. 121–123, pp. 1253–1256. https://doi.org/10.4028/www.scientific.net/SSP.121-123.1253

    Article  Google Scholar 

  36. Liu, W.B., Zhang, S., Hao, L.F., Jiao, W.C., Yang, F., Li, X.F., and Wang, R.G., Properties of carbon fiber sized with poly(phthalazinone ether ketone) resin, J. App. Polym. Sci., 2013, vol. 128, no. 6, pp. 3702–3709. https://doi.org/10.1002/app.38605

    Article  CAS  Google Scholar 

  37. Drzal, L.T. and Raghavendran, V.K., Adhesion of thermoplastic matrices to carbon fibers: Effect of polymer molecular weight and fiber surface chemistry, J. Thermoplast. Compos. Mater., 2003, vol. 16, no. 1, pp. 21–30. https://doi.org/10.1177/0892705703016001209

    Article  Google Scholar 

  38. Ershov, I.P., Zenitova, L.A., Sergeeva, E.A., and Abdullin, I.Sh., Selective removal of the components of a sizing formulation from the surface of fiberglass, Vestn. Tekhnol. Univ., 2015, vol. 18, no. 7179, p. 180.

    Google Scholar 

  39. Shershneva, I.N., Lesnichaya, V.A., Muradyan, V.E., and Smirnov, Yu.N., Study of the effect of polymeric sizing formulations on the physicomechanical properties of glass-reinforced plastics based on thermoplastic matrices, Plast. Massy, 2012, no. 11, pp. 45–51.

  40. Gashnikova, G.Yu., Aretemenko, S.E., Nikulina, L.P., and Gorokhovskii, A.V., Modification of filler as a method for targeted regulation of the properties of glass-filled polyvinyl butyral, Plast. Massy, 2001, no. 2, p. 10.

  41. Pukánszky, B., Interfaces and interphases in multicomponent materials: Past, present, future, Eur. Polym. J., 2005, vol. 41, no. 4, pp. 645–662. https://doi.org/10.1016/j.eurpolymj.2004.10.035

    Article  CAS  Google Scholar 

  42. Kopylov, V.M., Ivanov, V.V., and Kovyazin, V.A., Silane coupling agents, Vse Mater., 2007, no. 3, pp. 23–31.

  43. Kopylov, V.M., Ivanov, V.V., and Kovyazin, V.A., Silane coupling agents: A conclusion, Vse Mater., 2007, no. 4, pp. 18–20.

  44. Zelenetskii, A.N., Gorbatkina, Yu.A., Kuperman, A.M., Pirogov, O.N., Tovmasyan, M.A., Denisov, K.A., and Vasil’ev, I.A., Study of the modification of the surface of glass fibers by silane coupling agents and its effect on the strength of the interface and the properties of polypropylene glass-reinforced plastics, Vysokomol. Soedin., Ser. A Ser. B, 1995, vol. 37, no. 5, pp. 775–780.

  45. Arkles, B., Silane Coupling Agents: Connecting Across Boundaries, Morrisville, Pa.: Gelest, 2006, 2nd ed.

    Google Scholar 

  46. Ishida, H., A review of recent progress in the studies of molecular and microstructure of coupling agents and their functions in composites, coatings and adhesive joints, Polym. Compos., 1984, vol. 5, no. 2, pp. 101–123. https://doi.org/10.1002/pc.750050202

    Article  Google Scholar 

  47. Bigg, D.M., Effect of compounding on the properties of short fiber reinforced injection moldable thermoplastic composites, Polym. Compos., 1985, vol. 6, no. 1, pp. 20–28. https://doi.org/10.1002/pc.750060105

    Article  CAS  Google Scholar 

  48. Li, C. and Liu, X., Mechanical and thermal properties study of glass fiber reinforced polyarylene ether nitriles, Mater. Lett., 2007, vol. 61, nos. 11–12, pp. 2239–2242. https://doi.org/10.1016/j.matlet.2006.08.055

    Article  CAS  Google Scholar 

  49. Beider, E.Ya., Petrova, G.N., and Izotova, T.F., Effect of sizing formulations on the properties of glass fiber reinforced thermoplastics, Tr. Vseross. Nauchno-Issled. Inst. Aviats. Mater., 2014, no. 9, article no. 07.

  50. Li, J., Effect of silane coupling agent on the tensile properties of carbon fiber-reinforced thermoplastic polyimide composites, Polym.-Plast. Technol. Eng., 2010, vol. 49, no. 4, pp. 337–340. https://doi.org/10.1080/03602550903414001

    Article  CAS  Google Scholar 

  51. Chuang, S.L., Chu, N.-J., and Whang, W.T., Effect of polyamic acids on interfacial shear strength in carbon fiber/aromatic thermoplastics, J. App. Polym. Sci., 1990, vol. 41, nos. 1–2, pp. 373–382. https://doi.org/10.1002/app.1990.070410129

    Article  CAS  Google Scholar 

  52. Beider, E.Ya., Petrova, G.N., and Dykun, M.I., Sizing of carbon fibers as fillers for carbon fiber reinforced thermoplastics, Tr. Vseross. Nauchno-Issled. Inst. Aviats. Mater., 2014, no. 10, article no. 03.

  53. Yuan, H., Zhang, S., Lu, C., He, S., and An, F., Improved interfacial adhesion in carbon fiber/polyether sulfone composites through an organic solvent-free polyamic acid sizing, Appl. Surf. Sci., 2013, vol. 279, pp. 279–284. https://doi.org/10.1016/j.apsusc.2013.04.085

    Article  CAS  Google Scholar 

  54. Giraud, I., Franceschi-Messant, S., Perez, E., Lacabanne, C., and Dantras, E., Preparation of aqueous dispersion of thermoplastic sizing agent for carbon fiber by emulsion/solvent evaporation, Appl. Surf. Sci., 2013, vol. 266, pp. 94–99. https://doi.org/10.1016/j.apsusc.2012.11.098

    Article  CAS  Google Scholar 

  55. Zhang, X., Pei, X., Jia, Q., and Wang, Q., Effects of carbon fiber surface treatment on the tribological properties of 2D woven carbon fabric/polyimide composites, Appl. Phys. A: Mater. Sci. Process., 2009, vol. 95, pp. 793–799. https://doi.org/10.1007/s00339-009-5073-x

    Article  CAS  Google Scholar 

  56. Novikova, O.A. and Serov, V.P., Modifikatsiya poverkhnosti armiruyushchikh volokon v kompozitsionnykh materialakh (Modification of the Surface of Reinforcing Fibers in Composite Materials), Kiev: Naukova Dumka, 1989.

  57. Raghavendran, V.K. and Drzal, L.T., Fiber-matrix interfacial adhesion improvement in carbon fiber-bisphenol-A polycarbonate composites by polymer grafting, J. Adhes., 2002, vol. 78, no. 10, pp. 895–922. https://doi.org/10.1080/00218460214096

    Article  CAS  Google Scholar 

  58. He, X., Zhang, F., Wang, R., and Liu, W., Preparation of a carbon nanotube/carbon fiber multi-scale reinforcement by grafting multi-walled carbon nanotubes onto the fibers, Carbon, 2007, vol. 45, no. 13, pp. 2559–2563. https://doi.org/10.1016/j.carbon.2007.08.018

    Article  CAS  Google Scholar 

  59. Peng, Q., He, X., Li, Y., Wang, C., Wang, R., Hu, P., Yan, Y., and Sritharan, T., Chemically and uniformly grafting carbon nanotubes onto carbon fibers by poly(amidoamine) for enhancing interfacial strength in carbon fiber composites, J. Mater. Chem., 2012, vol. 22, no. 13, pp. 5928–5931. https://doi.org/10.1039/C2JM16723A

    Article  CAS  Google Scholar 

  60. Thostenson, E.T. and Chou, T.-W., Aligned multi-walled carbon nanotube-reinforced composites: Processing and mechanical characterization, J. Phys. D: Appl. Phys., 2002, vol. 35, no. 16, pp. L77–L80. https://doi.org/10.1088/0022-3727/35/16/103

    Article  CAS  Google Scholar 

  61. Liu, H., Li, J., Liu, X., and Jiang, S., A novel multiwalled carbon nanotubes bonded fused-silica fiber for solid phase microextraction–gas chromatographic analysis of phenols in water samples, Talanta, 2009, vol. 78, no. 3, pp. 929–935. https://doi.org/10.1016/j.talanta.2008.12.061

    Article  CAS  PubMed  Google Scholar 

  62. Zhao, F. and Huang, Y., Grafting of polyhedral oligomeric silsesquioxanes on a carbon fiber surface: Novel coupling agents for fiber/polymer matrix composites, J. Mater. Chem., 2011, vol. 21, no. 11, pp. 3695–3703. https://doi.org/10.1039/C0JM03128C

    Article  CAS  Google Scholar 

  63. Functional Fillers for Plastics, Xanthos, M., Ed., Weinheim: Wiley-VCH, 2005.

    Google Scholar 

Download references

Funding

This work was performed as part of integrated scientific direction 13.2 “Structural Polymer CMs” (Strategic Directions in the Development of Materials and Technologies for Processing Them for the Period until 2030) [3].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. E. Sorokin.

Additional information

Translated by E. Boltukhina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sorokin, A.E., Petrova, G.N. Lubricants and Coupling Agents in the Processes of the Liquid-Phase Modification of the Surface of Carbon and Glass Fiber Fillers in the Production of Structural Materials: A Review. Theor Found Chem Eng 54, 737–744 (2020). https://doi.org/10.1134/S0040579520040120

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040579520040120

Keywords:

Navigation