Skip to main content
Log in

Adsorption Kinetics, Isotherms, and Thermodynamics of Removal of Anionic Surfactant from Aqueous Solution Using Fly Ash

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Surfactants are organic compounds which can be used in several applications. However, they can contaminate world water resources causing detrimental effects to human beings, aquatic life, and animals. This paper investigates the adsorption kinetics, isotherms, and thermodynamic properties for the removal of an anionic surfactant, sodium dodecylbenzene sulfonate (SDBS), using fly ash. Characteristics of fly ash such as surface area and pore size analysis and the point of zero charge (PZC) were determined. The effects of parameters such as pH, surfactant concentration, and temperature and the adsorption kinetics, isotherms, and thermodynamic properties and adsorption mechanism were determined. Fly ash is a mesoporous material having surface area and pore size of 1.079 m2/g and 9.813 nm and PZC at pH 6.58. pH 2 and the temperature 25 °C were optimum for adsorbing SDBS onto fly ash. The adsorption capacity and removal efficiency increased by increasing the concentration of SDBS from 100 to 2000 mg/L, indicating that the increase of surfactant concentration could not saturate the surface of fly ash. The pseudo-second-order and the Langmuir isotherm models showed best fit to the adsorption data and the thermodynamic properties described adsorption as an exothermic, barrierless, non-spontaneous, and entropy-reducing reaction which is more feasible at a lower temperature of 25 °C. This indicated that the adsorption occurs by both physisorption and chemisorption with monolayer coverage of SDBS on the surface of fly ash. SDBS surfactant adsorbed onto fly ash mainly through electrostatic interactions between oppositely charged SDBS and fly ash.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

Data can be provided on request.

References

  • Aboulhassan, M., Souabi, S., Yaacoubi, A., & Baudu, M. (2006). Removal of surfactant from industrial wastewaters by coagulation flocculation process. International Journal of Environmental Science and Technology, 3(4), 327–332.

    CAS  Google Scholar 

  • Alkan, M., Karadaş, M., Doğan, M., & Demirbaş, Ö. (2005). Adsorption of CTAB onto perlite samples from aqueous solutions. Journal of Colloid and Interface Science, 291(2), 309–318.

    CAS  Google Scholar 

  • Asakawa, T., & Ogino, K. (1986). Removal of trace organic compounds from multicomponent liquid mixtures. I. Adsorption of surfactant mixtures on activated carbon. Colloid and Polymer Science, 264(12), 1085–1089.

    CAS  Google Scholar 

  • Bautista-Toledo, M. I., Rivera-Utrilla, J., Méndez-Díaz, J. D., Sánchez-Polo, M., & Carrasco-Marín, F. (2014). Removal of the surfactant sodium dodecylbenzenesulfonate from water by processes based on adsorption/bioadsorption and biodegradation. Journal of Colloid and Interface Science, 418, 113–119.

    CAS  Google Scholar 

  • Beltrán-Heredia, J., Sánchez-Martín, J., & Barrado-Moreno, M. (2012). Long-chain anionic surfactants in aqueous solution. Removal by Moringa oleifera coagulant. Chemical Engineering Journal, 180, 128–136.

    Google Scholar 

  • Boonyasuwat, S., Chavadej, S., Malakul, P., & Scamehorn, J. F. (2003). Anionic and cationic surfactant recovery from water using a multistage foam fractionator. Chemical Engineering Journal, 93(3), 241–252.

    CAS  Google Scholar 

  • De Gisi, S., Lofrano, G., Grassi, M., & Notarnicola, M. (2016). Characteristics and adsorption capacities of low-cost sorbents for wastewater treatment: a review. Sustainable Materials and Technologies, 9, 10–40.

    Google Scholar 

  • Edser, C. (2008). Status of global surfactant markets. Focus on Surfactants, 2008(11), 1–2.

    Google Scholar 

  • Freundlich, H. (1907). Über die adsorption in lösungen. Zeitschrift für Physikalische Chemie, 57(1), 385–470.

    CAS  Google Scholar 

  • Gönder, Z., Vergili, I., Kaya, Y., & Barlas, H. (2010). Adsorption of cationic and anionic surfactants onto organic polymer resin Lewatit VPOC 1064 MD PH. Environmental Geochemistry and Health, 32(4), 267–273.

    Google Scholar 

  • Gonzalez-Garcia, C., Gonzalez-Martin, M., Gallardo-Moreno, A., Gomez-Serrano, V., Labajos-Broncano, L., & Bruque, J. (2002). Removal of an ionic surfactant from wastewater by carbon blacks adsorption. Separation Science and Technology, 37(12), 2823–2837.

    CAS  Google Scholar 

  • Gupta, S., Pal, A., Ghosh, P. K., & Bandyopadhyay, M. (2003). Performance of waste activated carbon as a low-cost adsorbent for the removal of anionic surfactant from aquatic environment. Journal of Environmental Science and Health, Part A, 38(2), 381–397.

    Google Scholar 

  • Ho, Y. S., & McKay, G. (1999). Pseudo-second order model for sorption processes. Process Biochemistry, 34(5), 451–465.

    CAS  Google Scholar 

  • Ikehata, K., & El-Din, M. G. (2004). Degradation of recalcitrant surfactants in wastewater by ozonation and advanced oxidation processes: a review. Ozone: Science & Engineering, 26(4), 327–343.

    CAS  Google Scholar 

  • Juang, R. S., Wu, F. C., & Tseng, R. L. (1997). The ability of activated clay for the adsorption of dyes from aqueous solutions. Environmental Technology, 18(5), 525–531.

    CAS  Google Scholar 

  • Kahya, N., Kaygusuz, H., & Erim, F. B. (2018). Aqueous removal of sodium dodecyl benzene sulfonate (SDBS) by crosslinked chitosan films. Journal of Polymers and the Environment, 26(5), 2166–2172.

    CAS  Google Scholar 

  • Kim, D., Kim, J., Lee, K.-W., & Lee, T. S. (2019). Removal of sodium dodecylbenzenesulfonate using surface-functionalized mesoporous silica nanoparticles. Microporous and Mesoporous Materials, 275, 270–277.

    CAS  Google Scholar 

  • Kimerle, R. A., & Swisher, R. (1977). Reduction of aquatic toxicity of linear alkylbenzene sulfonate (LAS) by biodegradation. Water Research, 11(1), 31–37.

    CAS  Google Scholar 

  • Kowalska, I. (2011). Ion-exchange–ultrafiltration system for surfactants removal from water solutions. Desalination and Water Treatment, 25(1–3), 47–53.

    CAS  Google Scholar 

  • Krawczyk, J. (2018). Thermodynamic properties of disaccharide based surfactants adsorption at the water-air interface. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 551, 50–57.

    CAS  Google Scholar 

  • Lagergren, S. (1898). About the theory of so-called adsorption of soluble substances. Sven Vetenskapsakad Handingarl, 24, 1–39.

    Google Scholar 

  • Langmuir, I. (1918). The adsorption of gases on plane surfaces of glass, mica and platinum. Journal of the American Chemical Society, 40(9), 1361–1403.

    CAS  Google Scholar 

  • Liu, Y., Yan, C., Zhang, Z., Wang, H., Zhou, S., & Zhou, W. (2016). A comparative study on fly ash, geopolymer and faujasite block for Pb removal from aqueous solution. Fuel, 185, 181–189.

    CAS  Google Scholar 

  • Ncibi, M. C., Gaspard, S., & Sillanpää, M. (2015). As-synthesized multi-walled carbon nanotubes for the removal of ionic and non-ionic surfactants. Journal of Hazardous Materials, 286, 195–203.

    CAS  Google Scholar 

  • Önder, E., Koparal, A. S., & Öğütveren, Ü. B. (2007). An alternative method for the removal of surfactants from water: electrochemical coagulation. Separation and Purification Technology, 52(3), 527–532.

    Google Scholar 

  • Pal, A., Pan, S., & Saha, S. (2013). Synergistically improved adsorption of anionic surfactant and crystal violet on chitosan hydrogel beads. Chemical Engineering Journal, 217, 426–434.

    CAS  Google Scholar 

  • Panizza, M., Delucchi, M., & Cerisola, G. (2005). Electrochemical degradation of anionic surfactants. Journal of Applied Electrochemistry, 35(4), 357–361.

    CAS  Google Scholar 

  • Parhizgar, F., Alishahi, A., Varasteh, H., & Rezaee, H. (2017). Removing sodium dodecyl benzene sulfonate (SDBS) from aqueous solutions using chitosan. Journal of Polymers and the Environment, 25(3), 836–843.

    CAS  Google Scholar 

  • Pereira, L. C., de Souza, A. O., Bernardes, M. F. F., Pazin, M., Tasso, M. J., Pereira, P. H., & Dorta, D. J. (2015). A perspective on the potential risks of emerging contaminants to human and environmental health. Environmental Science and Pollution Research, 22(18), 13800–13823.

    CAS  Google Scholar 

  • Pérez-Carrera, E., León, V. M., Lara-Martín, P. A., & González-Mazo, E. (2010). Influence of the hydrophilic moiety of anionic and nonionic surfactants on their aerobic biodegradation in seawater. Science of the Total Environment, 408(4), 922–930.

    Google Scholar 

  • Runtti, H., Luukkonen, T., Niskanen, M., Tuomikoski, S., Kangas, T., Tynjälä, P., Tolonen, E.-T., Sarkkinen, M., Kemppainen, K., Rämö, J., & Lassi, U. (2016). Sulphate removal over barium-modified blast-furnace-slag geopolymer. Journal of Hazardous Materials, 317, 373–384.

    CAS  Google Scholar 

  • Schouten, N., van der Ham, L. G., Euverink, G.-J. W., & de Haan, A. B. (2007). Selection and evaluation of adsorbents for the removal of anionic surfactants from laundry rinsing water. Water Research, 41(18), 4233–4241.

    CAS  Google Scholar 

  • Shamsuddin, R. M., Verbeek, C. J. R., & Lay, M. C. (2014). Producing protein intercalated bentonite — equilibrium, kinetics and physical properties of gelatin–bentonite system. Applied Clay Science, 87, 52–60.

    CAS  Google Scholar 

  • Sineva, A. V., Parfenova, A. M., & Fedorova, A. A. (2007). Adsorption of micelle forming and non-micelle forming surfactants on the adsorbents of different nature. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 306(1), 68–74.

    CAS  Google Scholar 

  • Siyal, A. A., K. A. Azizli, L. Ismail, Z. Man and M. I. Khan (2016). Suitability of Malaysian fly ash for geopolymer synthesis. Advanced Materials Research, Trans Tech Publ.

  • Siyal, A. A., Rashid Shamsuddin, M., Rabat, N. E., Zulfiqar, M., Ayoub, M., & Azizli, K. A. (2018). Removal of anionic surfactant sodium dodecylbenzenesulfonate from water using fly ash adsorbent. IOP Conference Series: Materials Science and Engineering, 458, 012043.

    Google Scholar 

  • Siyal, A. A., Shamsuddin, M. R., Rabat, N. E., Zulfiqar, M., Man, Z., & Low, A. (2019). Fly ash based geopolymer for the adsorption of anionic surfactant from aqueous solution. Journal of Cleaner Production, 229, 232–243.

    CAS  Google Scholar 

  • Siyal, A. A., Shamsuddin, M. R., Low, A., & Rabat, N. E. (2020). A review on recent developments in the adsorption of surfactants from wastewater. Journal of Environmental Management, 254, 109797.

    CAS  Google Scholar 

  • Taffarel, S. R., & Rubio, J. (2010). Adsorption of sodium dodecyl benzene sulfonate from aqueous solution using a modified natural zeolite with CTAB. Minerals Engineering, 23(10), 771–779.

    CAS  Google Scholar 

  • Temkin, M. I. (1941). Adsorption equilibrium and the kinetics of processes on nonhomogeneous surfaces and in the interaction between adsorbed molecules. Zh Fiz Chim, 15, 296–332.

    CAS  Google Scholar 

  • Tezel, U., Tandukar, M., Martinez, R. J., Sobecky, P. A., & Pavlostathis, S. G. (2012). Aerobic biotransformation of n-tetradecylbenzyldimethylammonium chloride by an enriched pseudomonas spp. community. Environmental Science & Technology, 46(16), 8714–8722.

    CAS  Google Scholar 

  • Valizadeh, S., Younesi, H., & Bahramifar, N. (2016). Highly mesoporous K2CO3 and KOH/activated carbon for SDBS removal from water samples: batch and fixed-bed column adsorption process. Environmental Nanotechnology, Monitoring & Management, 6, 1–13.

  • Visa, M., & Duta, A. (2013). TiO2/fly ash novel substrate for simultaneous removal of heavy metals and surfactants. Chemical Engineering Journal, 223, 860–868.

  • Wang, S., Boyjoo, Y., Choueib, A., & Zhu, Z. H. (2005). Removal of dyes from aqueous solution using fly ash and red mud. Water Research, 39(1), 129–138.

    CAS  Google Scholar 

  • Wang, S., Terdkiatburana, T., & Tadé, M. O. (2008). Single and co-adsorption of heavy metals and humic acid on fly ash. Separation and Purification Technology, 58(3), 353–358.

    CAS  Google Scholar 

  • Weber, W. J., & Morris, J. C. (1963). Kinetics of adsorption on carbon from solution. Journal of the Sanitary Engineering Division, 89(2), 31–60.

    Google Scholar 

  • Zanoletti, A., Federici, S., Borgese, L., Bergese, P., Ferroni, M., Depero, L. E., & Bontempi, E. (2017). Embodied energy as key parameter for sustainable materials selection: the case of reusing coal fly ash for removing anionic surfactants. Journal of Cleaner Production, 141, 230–236.

    CAS  Google Scholar 

  • Zhang, C., Valsaraj, K. T., Constant, W. D., & Roy, D. (1999). Aerobic biodegradation kinetics of four anionic and nonionic surfactants at sub-and supra-critical micelle concentrations (CMCs). Water Research, 33(1), 115–124.

    CAS  Google Scholar 

  • Zhang, C., Wen, H., Huang, Y., & Shi, W. (2017). Adsorption of anionic surfactants from aqueous solution by high content of primary amino crosslinked chitosan microspheres. International Journal of Biological Macromolecules, 97, 635–641.

    CAS  Google Scholar 

  • Zulfiqar, M., Chowdhury, S., Samsudin, M. F. R., Siyal, A. A., Omar, A. A., Ahmad, T., & Sufian, S. (2020). Effect of organic solvents on the growth of TiO2 nanotubes: an insight into photocatalytic degradation and adsorption studies. Journal of Water Process Engineering, 37, 101491.

    Google Scholar 

Download references

Acknowledgments

Authors are thankful to Universiti Teknologi PETRONAS, Malaysia, for providing research facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rashid Shamsuddin.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Code Availability

Not applicable.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Siyal, A.A., Shamsuddin, R., Low, A. et al. Adsorption Kinetics, Isotherms, and Thermodynamics of Removal of Anionic Surfactant from Aqueous Solution Using Fly Ash. Water Air Soil Pollut 231, 509 (2020). https://doi.org/10.1007/s11270-020-04879-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-020-04879-2

Keywords

Navigation