Skip to main content
Log in

The Cayley Cubic and Differential Equations

  • Published:
The Journal of Geometric Analysis Aims and scope Submit manuscript

Abstract

We define Cayley structures as a field of Cayley’s ruled cubic surfaces over a four dimensional manifold and motivate their study by showing their similarity to indefinite conformal structures and their link to differential equations and the theory of integrable systems. In particular, for Cayley structures an extension of certain notions defined for indefinite conformal structures in dimension four are introduced, e.g., half-flatness, existence of a null foliation, ultra-half-flatness, an associated pair of second order ODEs, and a dispersionless Lax pair. After solving the equivalence problem we obtain the fundamental invariants, find the local generality of several classes of Cayley structures and give examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Notes

  1. This procedure is known as the absorption of torsion. Since in our case, absorbing the torsion is straightforward and and writing the details is not illuminating, we refer the reader to [39, 50, 66] for the background on Cartan’s method of equivalence.

  2. Since the integral manifolds of \(I_{\mathsf {cong}}\) are referred to as null surfaces of M,  we used the subscript \(\mathsf {null}\) for the 3-fold S.

References

  1. Akivis, M. A., Goldberg, V. V.: Conformal differential geometry and its generalizations. Pure and Applied Mathematics (New York). John Wiley & Sons Inc., New York. A Wiley-Interscience Publication (1996)

  2. Anderson, I., Nie, Z., Nurowski, P.: Non-rigid parabolic geometries of Monge type. Adv. Math. 277, 24–55 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  3. Baston, R .J.: Almost Hermitian symmetric manifolds. I. Local twistor theory. Duke Math. J. 63(1), 81–112 (1991)

    MathSciNet  MATH  Google Scholar 

  4. Bailey, T.N., Eastwood, M.G.: Complex paraconformal manifolds—their differential geometry and twistor theory. Forum Math. 3(1), 61–103 (1991)

    MathSciNet  MATH  Google Scholar 

  5. Belgun, F.A.: On the Weyl tensor of a self-dual complex 4-manifold. Trans. Am. Math. Soc. 356(3), 853–880 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bryant, R.L., Griffiths, P., Grossman, D.: Exterior differential systems and Euler-Lagrange partial differential equations. Chicago Lectures in Mathematics. University of Chicago Press, Chicago, IL (2003)

  7. Bryant, R.L., Griffiths, P., Hsu, L.: Toward a geometry of differential equations. In Geometry, topology, & physics, Conf. Proc. Lecture Notes Geom. Topology, IV, pp. 1–76. Int. Press, Cambridge, MA (1995)

  8. Bokan, N., Nomizu, K., Simon, U.: Affine hypersurfaces with parallel cubic forms. Tohoku Math. J. (2) 42(1), 101–108 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bryant, R.L.: Two exotic holonomies in dimension four, path geometries, and twistor theory. In Complex geometry and Lie theory (Sundance, UT, 1989), volume 53 of Proc. Sympos. Pure Math., pages 33–88. Amer. Math. Soc., Providence, RI (1991)

  10. Bryant, R .L.: Projectively flat Finsler \(2\)-spheres of constant curvature. Selecta Math. (N.S.) 3(2), 161–203 (1997)

    MathSciNet  MATH  Google Scholar 

  11. Bryant, R.L.: Conformal geometry and 3-plane fields on 6-manifolds. Developments of Cartan Geometry and Related Mathematical Problems, RIMS Symposium Proceedings 1502, 1–15 (2006)

  12. Bryant, R.L: Notes on exterior differential systems. arXiv preprint, (2014)

  13. Calderbank, D.M.J.: Selfdual 4-manifolds, projective surfaces, and the Dunajski-West construction. SIGMA Symmetry Integrability Geom. Methods Appl., 10:Paper 035, 18, (2014)

  14. Cartan, E.: Les espaces à connection conforme. Ann. Soc. Pol. Math. T. 2, 1923 (1923)

    Google Scholar 

  15. Cartan, E.: Sur les variétés à connexion projective. Bull. Soc. Math. France 52, 205–241 (1924)

    Article  MathSciNet  MATH  Google Scholar 

  16. Cartan, E.: L’extension du calcul tensoriel aux géométries non-affines. Ann. Math. (2) 38(1), 1–13 (1937)

    Article  MathSciNet  MATH  Google Scholar 

  17. Casey, S., Dunajski, M., Tod, P.: Twistor geometry of a pair of second order ODEs. Commun. Math. Phys. 321(3), 681–701 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  18. Chern, S.-S.: A generalization of the projective geometry of linear spaces. Proc. Natl. Acad. Sci. U.S.A. 29, 38–43 (1943)

    Article  MathSciNet  MATH  Google Scholar 

  19. Crampin, M., Saunders, D.J.: Path geometries and almost Grassmann structures. 48, 225–261 (2007)

  20. Čap, A., Slovák, J.: Parabolic geometries. I, volume 154 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI. Background and general theory (2009)

  21. Dillen, F., Doubrov, B., Komrakov, B., Rabinovich, M.: Homogeneous surfaces in the three-dimensional projective geometry. J. Math. Soc. Japan 52(1), 199–230 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  22. Dunajski, M., Ferapontov, E. V., Kruglikov, B.: On the Einstein-Weyl and conformal self-duality equations. J. Math. Phys. 56(8), 083501, 10, (2015)

  23. Dunajski, M., Kryński, W.: Einstein-Weyl geometry, dispersionless Hirota equation and Veronese webs. Math. Proc. Camb. Philos. Soc. 157(1), 139–150 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  24. Doubrov, B., Komrakov, B., Morimoto, T.: Equivalence of holonomic differential equations. Lobachevskii J. Math., 3:39–71, 1999. Towards 100 years after Sophus Lie (Kazan, 1998)

  25. Dolgachev, I.V.: Classical Algebraic Geometry. Cambridge University Press, Cambridge. A Modern View (2012)

  26. Doubrov, B.: Generalized Wilczynski invariants for non-linear ordinary differential equations. In Symmetries and overdetermined systems of partial differential equations, volume 144 of IMA Vol. Math. Appl., pages 25–40. Springer, New York, (2008)

  27. Dunajski, M., Tod, P.: Paraconformal geometry of \(n\)th-order ODEs, and exotic holonomy in dimension four. J. Geom. Phys. 56(9), 1790–1809 (2006)

    MathSciNet  MATH  Google Scholar 

  28. Dillen, F., Vrancken, L.: Hypersurfaces with parallel difference tensor. Japan. J. Math. (N.S.) 24(1), 43–60 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  29. Dunajski, M., West, S.: Anti-self-dual conformal structures with null Killing vectors from projective structures. Commun. Math. Phys. 272(1), 85–118 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  30. Dunajski, M., West, S.: Anti-self-dual conformal structures in neutral signature. pages 113–148, (2008)

  31. Eastwood, M., Ezhov, V.: Cayley hypersurfaces. Tr. Mat. Inst. Steklova, 253(Kompleks. Anal. i Prilozh.):241–244, (2006)

  32. Esculier, A., Ferréol, R., Vidiani, L.G.: Ruled cubic. https://www.mathcurve.com/surfaces.gb/cubic/cubique_reglee.shtml, (2017). Accessed 11 March 2020

  33. Egorov, I .P.: Collineations of projectively connected spaces. Doklady Akad. Nauk SSSR (N.S.) 80, 709–712 (1951)

    MathSciNet  Google Scholar 

  34. Eisenhart, L.P.: Riemannian geometry. Princeton Landmarks in Mathematics. Princeton University Press, Princeton, NJ. Eighth printing, Princeton Paperbacks (1997)

  35. Fels, M .E.: The equivalence problem for systems of second-order ordinary differential equations. Proc. London Math. Soc. (3) 71(1), 221–240 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  36. Ferapontov, E.V., Kruglikov, B.S.: Dispersionless integrable systems in 3D and Einstein-Weyl geometry. J. Differ. Geom. 97(2), 215–254 (2014)

    MathSciNet  MATH  Google Scholar 

  37. Ferapontov, E., Kruglikov, B.: Dispersionless integrable hierarchies and \({GL(2,\mathbb{R} )}\) geometry. Mathematical Proceedings of the Cambridge Philosophical Society, pages 1–26, (2016)

  38. Further advances in twistor theory. Vol. II. 232:xii+274, 1995. Integrable systems, conformal geometry and gravitation

  39. Gardner, R.B.: The method of equivalence and its applications, volume 58 of CBMS-NSF Regional Conference Series in Applied Mathematics. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, (1989)

  40. Godlinski, M., Nurowski, P.: \({{\rm GL}}(2,\mathbf{R})\) geometry of ODE’s. J. Geom. Phys. 60(6–8), 991–1027 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  41. Grossman, D. A.: Path geometries and second-order ordinary differential equations. ProQuest LLC, Ann Arbor, MI, (2000). Thesis (Ph.D.)–Princeton University

  42. Grossman, D.A.: Torsion-free path geometries and integrable second order ODE systems. Sel. Math. (N.S.) 6(4), 399–442 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  43. Henrici, P.: Applied and computational complex analysis. Vol. 3. Pure and Applied Mathematics (New York). John Wiley & Sons, Inc., New York. Discrete Fourier analysis—Cauchy integrals—construction of conformal maps—univalent functions, A Wiley-Interscience Publication (1986)

  44. Hwang, J.-M., Mok, N.: Birationality of the tangent map for minimal rational curves. Asian J. Math. 8(1), 51–63 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  45. Holland, J., Sparling, G.: Causal geometries and third-order ordinary differential equations. Arxiv preprint arXiv:1001.0202, (2010)

  46. Holland, J., Sparling, G.: Causal geometries, null geodesics, and gravity. arXiv preprint arXiv:1106.5254, (2011)

  47. Hwang, J.-M.: Equivalence problem for minimal rational curves with isotrivial varieties of minimal rational tangents. Ann. Sci. Éc. Norm. Supér. (4) 43(4), 607–620 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  48. Hwang, J.-M.: Geometry of varieties of minimal rational tangents. In Current developments in algebraic geometry, volume 59 of Math. Sci. Res. Inst. Publ., pp. 197–226. Cambridge Univ. Press, Cambridge, (2012)

  49. Hwang, J.-M.: Varieties of minimal rational tangents of codimension 1. Ann. Sci. Éc. Norm. Supér. (4), 46(4):629–649 (2013), 2013

  50. Ivey, T.A., Landsberg, J.M.: Cartan for beginners: differential geometry via moving frames and exterior differential systems. Graduate Studies in Mathematics, vol. 61. American Mathematical Society, Providence, RI (2003)

  51. Javaloyes, M.A., Sánchez, M.: On the definition and examples of cones and Finsler spacetimes. Rev. Real Acad. Cienc. Exact. Fis. Nat. Ser. A 114(1):30 (2020)

  52. Kryński, W., Mettler, T.: \({{\rm GL}}(2)\)-structures in dimension four, \({H}\)-flatness and integrability. Commun. Anal. Geom. 27(8), 1851–1868 (2019)

    MathSciNet  MATH  Google Scholar 

  53. Kryński, W.: On contact equivalence of systems of ordinary differential equations. arXiv:0712.1455, (2007)

  54. Kryński, W.: Webs and projective structures on a plane. Differ. Geom. Appl. 37, 133–140 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  55. Kryński, W.: Paraconformal structures, ordinary differential equations and totally geodesic manifolds. J. Geom. Phys. 103, 1–19 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  56. Kruglikov, B., The, D.: The gap phenomenon in parabolic geometries. J. Reine Angew. Math. 723, 153–215 (2017)

    MathSciNet  MATH  Google Scholar 

  57. LeBrun, C.R., Mason, L.J.: Nonlinear gravitons, null geodesics, and holomorphic disks. Duke Math. J. 136(2), 205–273 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  58. Makhmali, O.: Differential Geometric Aspects of Causal Structures. PhD thesis, McGill University, (2016)

  59. Makhmali, O.: Differential geometric aspects of causal structures. SIGMA 14(080), (2018)

  60. Mettler, T.: Reduction of \(\beta \)-integrable 2-Segre structures. Commun. Anal. Geom. 21(2), 331–353 (2013)

    MathSciNet  MATH  Google Scholar 

  61. Mok, N.: Geometric structures on uniruled projective manifolds defined by their varieties of minimal rational tangents. Number 322, pages 151–205. Géométrie différentielle, physique mathématique, mathématiques et société. II (2008)

  62. Mason, L.J., Woodhouse, N.M.J.: Integrability, self-duality, and twistor theory, volume 15 of London Mathematical Society Monographs. New Series. The Clarendon Press, Oxford University Press, New York. Oxford Science Publications (1996)

  63. Nomizu, K., Pinkall, U.: Cayley surfaces in affine differential geometry. Tohoku Math. J. (2) 41(4), 589–596 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  64. Nomizu, K., Sasaki, T.: Affine differential geometry, volume 111 of Cambridge Tracts in Mathematics. Cambridge University Press, Cambridge. Geometry of affine immersions (1994)

  65. Nurowski, P.: Differential equations and conformal structures. J. Geom. Phys. 55(1), 19–49 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  66. Olver, P.J.: Equivalence, invariants, and symmetry. Cambridge University Press, Cambridge (1995)

    Book  MATH  Google Scholar 

  67. Penrose, R., Nonlinear gravitons and curved twistor theory. General Relativity and Gravitation, 7(1), 31–52, : The riddle of gravitation-on the occasion of the 60th birthday of Peter G, p. 1975. Conf., Syracuse Univ., Syracuse, N. Y, Bergmann (Proc (1976)

  68. Pasillas-Lépine, W., Respondek, W.: Contact systems and corank one involutive subdistributions. Acta Appl. Math. 69(2), 105–128 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  69. Sasaki, T.: Projective differential geometry and linear homogeneous differential equations. Kobe University, Department of Mathematics (1999)

  70. Sasaki, T.: Line congruence and transformation of projective surfaces. Kyushu J. Math. 60(1), 101–243 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  71. Segal, I.E.: Mathematical cosmology and extragalactic astronomy. Academic Press , New York-London. Pure and Applied Mathematics, Vol. 68 (1976)

  72. Sharpe, R.W., Differential geometry, volume 166 of Graduate Texts in Mathematics. Springer-Verlag, New York, : Cartan’s generalization of Klein’s Erlangen program. With a foreword by S. S, Chern (1997)

  73. Smith, A.D.: Integrable \({\rm GL}(2)\) geometry and hydrodynamic partial differential equations. Commun. Anal. Geom. 18(4), 743–790 (2010)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We would like to thank D. Calderbank, M. Dunajski, E. Ferapontov, B. Kruglikov, P. Nurowski, A. Sergyeyev and D. The for helpful conversations, suggestions and interest. The starting point of our collaboration occurred during the Simons Semester Symmetry and Geometric Structures at IMPAN in 2018. This work was partially supported by the grant 346300 for IMPAN from the Simons Foundation and the matching 2015-2019 Polish MNiSW fund. OM acknowledges the partial support of the grant GA19-06357S from the Czech Science Foundation, GAČR. WK acknowledges the partial support of the grant 2019/34/E/ST1/00188 from the National Science Centre, Poland.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Omid Makhmali.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

In this section we will present the relations between the quantities \(b_{ijk}\) in structure equations (2.15) when \(a_7 = 2a_6\) in the branching (2.16) as described below

$$\begin{aligned} \begin{aligned}&b_{104} = -a_4,\ \ b_{105} = -a_2, \ \ b_{113} = b_{223},\ \ b_{114} = -2a_3,\ \ b_{115} = a_1, \ \ b_{124} = -a_1,\ \ b_{125} = 0,\\&b_{134} = 0,\ \ b_{135} = 0,\ \ b_{145} = 0,\ \ b_{203} = b_{102},\ \ b_{204} = -a_6, b_{205} = 0,\ \ b_{215} = -a_3+a_2, \\&b_{224} = -2a_3,\ \ b_{225} = a_1,\ \ b_{235}=0,\ \ b_{245} = 0,\ \ b_{302}= -b_{402}+b_{201},\ \ b_{303} = -b_{403}+b_{101},\\&b_{304} = 0,\ \ b_{305} = -5a_6,\ \ b_{312} = b_{202}-b_{101},\ \ b_{313}=b_{102},\ \ b_{314} = a_6,\ \ b_{315} = 0,\\&b_{323} = b_{103},\ \ b_{324} = -a_4,\ \ b_{325} = -a_2,\ \ b_{334} = a_2,\ \ b_{335} = 0,\ \ b_{345}=0,\ \ b_{404} = 0,\\&b_{405} = 3a_6,\ \ b_{413} = \textstyle {\frac{1}{2}}(b_{212}-b_{102}),\ \ b_{414} = \textstyle {-\frac{3}{2}}a_6,\ \ b_{415}=-\textstyle {\frac{1}{2}}a_5,\\&b_{423} = -b_{103}-b_{112},\ \ b_{424} = a_5+a_4,\ \ b_{425} = -a_3+2a_2,\\&b_{434} = -a_3-a_2, b_{435} = a_1,\ \ b_{445} = 0. \end{aligned} \end{aligned}$$
(A.1)

For the branch \(a_7 = \textstyle {\frac{3}{2}}a_6\), in (2.16), the quantities that are different from the ones in (A.1) are

$$\begin{aligned} b_{305}=-\textstyle {\frac{7}{2}a_6}, \ \ b_{314}=\textstyle {\frac{1}{2}a_6},\ \ b_{405}=-\textstyle {2a_6},\ \ b_{414}=-a_6 \end{aligned}$$

Additionally, the expression of the \(\mathfrak {sl}_4(\mathbb {R})\)-valued Cartan connection (3.2), mentioned in Sect. 4.3, satisfying (4.11), is as follows when \(a_7 = 2a_6\) in the branching (2.16).

$$\begin{aligned} \begin{aligned} \psi _0&= -(a_4 + a_5) \omega ^0 + \phi _0,\\ \psi _1&= -(a_4 + a_5) \omega ^0+(a_2 - a_3) \omega ^1 + \phi _0 + \phi _1,\\ \psi _2&= - a_5 \omega ^0+a_1 \omega ^2 - 2 \phi _1,\\ \gamma _1&=\textstyle {\frac{1}{2} a_6 \omega ^0-(a_4+a_5)\omega ^1+(-\frac{3}{4}a_2+\frac{1}{2}a_3) \omega ^2},\\ \gamma _2&= \textstyle {2 a_6 \omega ^1-a_4 \omega ^2+a_2 \omega ^3,}\\ \mu _3&=\textstyle {(- \frac{3}{4} b_{101}-\frac{3}{4}b_{403}+\frac{1}{4} b_{412}+\frac{1}{4} a_{3;2}-\frac{1}{4} a_{4;3}+\frac{1}{2} a_1 a_2) \omega ^0-b_{212} \omega ^1}\\&+ \textstyle {(\frac{5}{4}b_{112}-\frac{1}{4} a_{1;3}+\frac{3}{4} b_{103}) \omega ^2+b_{223} \omega ^3-2 a_3 \theta ^1+a_1 \theta ^2},\\ \mu _2&=\textstyle {(\frac{3}{2} a_3 a_4+\frac{3}{2} a_5 a_3-\frac{1}{4} a_1 a_6-\frac{9}{4} a_4 a_2-\frac{45}{16} a_2 a_5-\frac{5}{16}b_{301}-\frac{7}{8} b_{401}-\frac{7}{8} a_{4;1}-a_{5;1}) \omega ^0}\\&+\textstyle {b_{201} \omega ^1+\frac{1}{4}(2 a_1 a_2+a_{3;2}-3 b_{101}+4b_{202}-3 b_{403}+b_{412}- a_{4;3}) \omega ^2+b_{102} \omega ^3-a_6 \theta ^1},\\ \mu _1&=\textstyle {(-\frac{1}{2} a_2a_3 +\frac{3}{4} a_2^2-\frac{1}{2} a_{6;3})\omega ^0+\frac{1}{4}(2 a_1a_2- b_{101}+ 3a_{3;2} + a_{4;3}- b_{403}+ 3 b_{412})\omega ^1}\\&+\textstyle {\frac{1}{4}(3b_{102}+ b_{212}- a_{2;3})\omega ^2+\frac{1}{4}(b_{103}-b_{112}+a_{1;3})\omega ^3+(-a_4-a_5)\theta ^1+(-\frac{3}{4} a_2+\frac{1}{2} a_3)\theta ^2}\\ \mu _0&=\textstyle {(4a_2a_6-\frac{5}{2} a_3a_6+4a_4a_5+2a_4^2+2a_5^2-\frac{1}{2} a_{6;1})\omega ^0}\\&+\textstyle {(-\frac{3}{4}a_1a_6-\frac{3}{4} a_4a_2-\frac{15}{16}a_2a_5+\frac{1}{2}a_3a_4+\frac{1}{2} a_5a_3+\frac{9}{16}b_{301}+\frac{3}{8}b_{401}+\frac{3}{8}a_{4;1})\omega ^1}\\&+\textstyle {\frac{1}{4}(-2a_2a_3+ 3a_2^2+b_{201}- 3b_{402}- a_{6;3}+ a_{4;2}+ a_{5;2})\omega ^2}\\&+\textstyle {\frac{1}{4}(-2 a_1a_2+ 3 b_{101}- b_{403}- b_{412}- a_{3;2}+ a_{4;3})\omega ^3-\frac{5}{2} a_6\theta ^2}\\ \end{aligned} \end{aligned}$$
(A.2)

For the branch \(a_7 = \textstyle {\frac{3}{2}}a_6\) let us denote the entries of the \(\mathfrak {sl}_4(\mathbb {R})\)-valued Cartan connection (3.2) not included in (4.11) by \(\tilde{\psi }_0,\tilde{\psi }_1,\tilde{\psi }_2,\tilde{\gamma }_1,\tilde{\gamma }_2,\tilde{\mu }_3,\tilde{\mu }_2,\tilde{\mu }_1,\tilde{\mu }_0.\) Using the expressions given in (A.2) one obtains

$$\begin{aligned} \begin{aligned}&\tilde{\psi }_0=\psi _0,\qquad \tilde{\psi }_1=\psi _1,\qquad \tilde{\psi }_2=\psi _2,\qquad \tilde{\gamma }_1=\gamma _1-\textstyle {\frac{1}{8}}a_6\omega ^0,\qquad \tilde{\gamma }_2=\gamma _2-\textstyle {\frac{1}{2}}a_6\omega ^1,\\&\tilde{\mu }_3=\mu _3,\qquad \tilde{\mu }_2=\mu _2+\textstyle {\frac{1}{16}}(a_1a_6-3a_2a_5-3b_{301}-6b_{401})\omega ^0,\qquad \tilde{\mu }_1=\mu _1-\textstyle {\frac{1}{8}}a_{6;3}\omega ^0,\\&\tilde{\mu }_0=\mu _0 +\frac{1}{8}(-20a_6 a_2+15a_3 a_6-5 a_{6;1}) \omega ^0\\&+\frac{1}{16}(3a_1 a_6- a_2 a_5- b_{301}-2b_{401}) \omega ^1-\frac{1}{8}a_{6;3} \omega ^2 +\frac{11}{8}a_6 \theta ^2 \end{aligned} \end{aligned}$$
(A.3)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kryński, W., Makhmali, O. The Cayley Cubic and Differential Equations. J Geom Anal 31, 6219–6273 (2021). https://doi.org/10.1007/s12220-020-00525-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12220-020-00525-9

Keywords

Mathematics Subject Classification

Navigation