Skip to main content

Advertisement

Log in

Bioregulators: unlocking their potential role in regulation of the plant oxidative defense system

  • Review
  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Key message

Plant bioregulators play an important role in managing oxidative stress tolerance in plants. Utilizing their ability in stress sensitive crops through genetic engineering will be a meaningful approach to manage food production under the threat of climate change.

Abstract

Exploitation of the plant defense system against oxidative stress to engineer tolerant plants in the climate change scenario is a sustainable and meaningful strategy. Plant bioregulators (PBRs), which are important biotic factors, are known to play a vital role not only in the development of plants, but also in inducing tolerance in plants against various environmental extremes. These bioregulators include auxins, gibberellins, cytokinins, abscisic acid, brassinosteroids, polyamines, strigolactones, and ascorbic acid and provide protection against the oxidative stress-associated reactive oxygen species through modulation or activation of a plant’s antioxidant system. Therefore, exploitation of their functioning and accumulation is of considerable significance for the development of plants more tolerant of harsh environmental conditions in order to tackle the issue of food security under the threat of climate change. Therefore, this review summarizes a new line of evidence that how PBRs act as inducers of oxidative stress resistance in plants and how they could be modulated in transgenic crops via introgression of genes. Reactive oxygen species production during oxidative stress events and their neutralization through an efficient antioxidants system is comprehensively detailed. Further, the use of exogenously applied PBRs in the induction of oxidative stress resistance is discussed. Recent advances in engineering transgenic plants with modified PBR gene expression to exploit the plant defense system against oxidative stress are discussed from an agricultural perspective.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abiri R, Shaharuddin NA, Maziah M et al (2017) Role of ethylene and the APETALA 2/ethylene response factor superfamily in rice under various abiotic and biotic stress conditions. Environ Exp Bot 134:33–44

    CAS  Google Scholar 

  • Agarwal P, Dabi M, Sapara KK, Joshi PS, Agarwal PK (2016) Ectopic expression of JcWRKY transcription factor confers salinity tolerance via salicylic acid signaling. Front Plant Sci 7:1541

    PubMed  PubMed Central  Google Scholar 

  • Ahammed GJ, He BB, Qian XJ, Zhou YH, Shi K, Zhou J, Yu JQ, Xia XJ (2017) 24-Epibrassinolide alleviates organic pollutants-retarded root elongation by promoting redox homeostasis and secondary metabolism in Cucumis sativus L. Environ Pollut 229:922–931

    CAS  PubMed  Google Scholar 

  • Ahanger MA, Alyemeni MN, Wijaya L, Alamri SA, Alam P, Ashraf M, Ahmad P (2018) Potential of exogenously sourced kinetin in protecting Solanum lycopersicum from NaCl-induced oxidative stress through up-regulation of the antioxidant system, ascorbate-glutathione cycle and glyoxalase system. PLoS ONE 13:e0202175

    PubMed  PubMed Central  Google Scholar 

  • Ahmad P, Rasool S, Gul A, Sheikh SA, Akram NA, Ashraf M, Gucel S (2016) Jasmonates: multifunctional roles in stress tolerance. Front Plant Sci 7:813

    PubMed  PubMed Central  Google Scholar 

  • Ahmad R, Lim CJ, Kwon SY (2013) Glycine betaine: a versatile compound with great potential for gene pyramiding to improve crop plant performance against environmental stresses. Plant Biotechnol Rep 7:49–57

    Google Scholar 

  • Ahmad R, Hussain S, Anjum MA, Khalid MF, Saqib M, Zakir I, Zakir I, Hassan A, Fahad S, Ahmad S (2019) Oxidative stress and antioxidant defense mechanisms in plants under salt stress. In: Hasanuzzaman M, Hakeem KR, Nahar K, Alharby HF (eds) Plant abiotic stress tolerance. Springer, Cham, pp 191–205

    Google Scholar 

  • Ahmadi FI, Karimi K, Struik PC (2018) Effect of exogenous application of methyl jasmonate on physiological and biochemical characteristics of Brassica napus L. cv. Talaye under salinity stress. S Afr J Bot 115:5–11

    CAS  Google Scholar 

  • Ahmed N, Zhang Y, Li K, Zhou Y, Zhang M, Li Z (2019) Exogenous application of glycine betaine improved water use efficiency in winter wheat (Triticum aestivum L.) via modulating photosynthetic efficiency and antioxidative capacity under conventional and limited irrigation conditions. Crop J 7:635–650

    Google Scholar 

  • Akram NA, Shafiq F, Ashraf M (2017) Ascorbic acid-a potential oxidant scavenger and its role in plant development and abiotic stress tolerance. Front Plant Sci 8:613

    PubMed  PubMed Central  Google Scholar 

  • Alla MN, Badran E, Mohammed F (2019) Exogenous trehalose alleviates the adverse effects of salinity stress in wheat. Turk J Bot 43:48–57

    CAS  Google Scholar 

  • Annunziata MG, Ciarmiello LF, Woodrow P, Dell’Aversana E, Carillo P (2019) Spatial and temporal profile of glycine betaine accumulation in plants under abiotic stresses. Front Plant Sci 10:230

    PubMed  PubMed Central  Google Scholar 

  • Apel K, Hirt H (2004) Reactive oxygen species, metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55:373–399

    CAS  PubMed  Google Scholar 

  • Ashraf M (2009) Biotechnological approach of improving plant salt tolerance using antioxidants as markers. Biotechnol Adv 27:84–93

    CAS  PubMed  Google Scholar 

  • Ashraf M, Foolad MR (2007) Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environ Exp Bot 59:206–216

    CAS  Google Scholar 

  • Ashraf M, Harris PJC (2013) Photosynthesis under stressful environments, an overview. Photosynthetica 51:163–190

    CAS  Google Scholar 

  • Ashraf MA, Riaz M, Arif MS, Rasheed R, Iqbal M, Hussain I, Salman M (2019) The role of non-enzymatic antioxidants in improving abiotic stress tolerance in plants. In: Hasanuzzaman M, Fujita M, Oku H, Islam MT (eds) Plant tolerance to environmental stress, role of phytoprotectants. CRC Press, Boca Raton, p 129

    Google Scholar 

  • Asseng S, Ewert F, Martre P, Rötter RP, Lobell DB, Cammarano D et al (2015) Rising temperatures reduce global wheat production. Nat Clim Change 5:143–147

    Google Scholar 

  • Balfagón D, Zandalinas SI, Gómez-Cadenas A (2019) High temperatures change the perspective, integrating hormonal responses in citrus plants under co-occurring abiotic stress conditions. Physiol Plant 165:183–197

    PubMed  Google Scholar 

  • Banerjee A, Roychoudhury A (2019) The regulatory signaling of gibberellin metabolism and its crosstalk with phytohormones in response to plant abiotic stresses. Plant signaling molecules. Woodhead Publishing Limited, Cambridge, pp 333–339

    Google Scholar 

  • Barbafieri M, Morelli E, Tassi E, Pedron F, Remorini D, Petruzzelli G (2018) Overcoming limitation of “recalcitrant areas” to phytoextraction process, the synergistic effects of exogenous cytokinins and nitrogen treatments. Sci Total Environ 639:1520–1529

    CAS  PubMed  Google Scholar 

  • Bashri G, Prasad SM (2016) Exogenous IAA differentially affects growth, oxidative stress and antioxidants system in Cd stressed Trigonella foenum-graecum L. seedlings, Toxicity alleviation by up-regulation of ascorbate-glutathione cycle. Ecotoxicol Environ Saf 132:329–338

    CAS  PubMed  Google Scholar 

  • Ben Massoud M, Karmous I, El Ferjani E, Chaoui A (2018) Alleviation of copper toxicity in germinating pea seeds by IAA, GA3, Ca and citric acid. J Plant Interac 13:21–29

    CAS  Google Scholar 

  • Bhattacharjee S (2005) Reactive oxygen species and oxidative burst, roles in stress, senescence and signal. Curr Sci 89:1113–1121

    CAS  Google Scholar 

  • Blokhina O, Fagerstedt KV (2010) Oxidative metabolism, ROS and NO under oxygen deprivation. Plant Physiol Biochem 48:359–373

    CAS  PubMed  Google Scholar 

  • Blokhina O, Virolainen EO, Fagerstedt KV (2003) Antioxidants, oxidative damage and oxygen deprivation stress, a review. Ann Bot 91:179–194

    CAS  PubMed  PubMed Central  Google Scholar 

  • Blum A (2017) Osmotic adjustment is a prime drought stress adaptive engine in support of plant production. Plant Cell Environ 40:4–10

    CAS  PubMed  Google Scholar 

  • Carlsson GH, Hasse D, Cardinale F, Prandi C, Andersson I (2018) The elusive ligand complexes of the DWARF14 strigolactone receptor. J Exp Bot 69:2345–2354

    CAS  PubMed  PubMed Central  Google Scholar 

  • Caverzan A, Passaia G, Rosa SB, Ribeiro CW, Lazzarotto F, Margis-Pinheiro M (2012) Plant responses to stresses, role of ascorbate peroxidase in the antioxidant protection. Genet Mol Biol 35:1011–1019

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chakraborty N, Basak J (2019) Exogenous application of methyl jasmonate induces defense response and develops tolerance against mungbean yellow mosaic India virus in Vigna mungo. Funct Plant Biol 46:69–81

    CAS  Google Scholar 

  • Chang Z, Liu Y, Dong H, Teng K, Han L, Zhang X (2016) Effects of cytokinin and nitrogen on drought tolerance of creeping bentgrass. PLoS ONE 11:e0154005

    PubMed  PubMed Central  Google Scholar 

  • Chavoushi M, Najafi F, Salimi A, Angaji SA (2019) Improvement in drought stress tolerance of safflower during vegetative growth by exogenous application of salicylic acid and sodium nitroprusside. Ind Crops Prod 134:168–176

    CAS  Google Scholar 

  • Chen TH, Murata N (2011) Glycinebetaine protects plants against abiotic stress: mechanisms and biotechnological applications. Plant Cell Environ 34:1–20

    PubMed  Google Scholar 

  • Chen D, Shao Q, Yin L, Younis A, Zheng B (2019) Polyamine function in plants: metabolism, regulation on development, and roles in abiotic stress responses. Front Plant Sci 9:1945

    PubMed  PubMed Central  Google Scholar 

  • Chen X, Yang H, Gan C, Yuan R, Han Z, Li Y (2020) Transcriptomic analysis of the phytotoxic effects of 1-allyl-3-methylimidazolium chloride on the growth and plant hormone metabolic pathways of maize (Zea mays L.) seedlings. Chemosphere 241:125013

    CAS  PubMed  Google Scholar 

  • Cheng Z, Jin R, Cao M, Liu X, Chan Z (2016) Exogenous application of ABA mimic 1 (AM1) improves cold stress tolerance in bermudagrass (Cynodon dactylon). Plant Cell Tissue Organ Cult 125:231–240

    CAS  Google Scholar 

  • Choudhury S, Panda P, Sahoo L, Kumar S, Panda SK (2013) Reactive oxygen species signalling in plants under abiotic stress. Plant Signal Behav 8:4

    Google Scholar 

  • Choudhury FK, Rivero RM, Blumwald E, Mittler R (2016) Reactive oxygen species, abiotic stress and stress combination. Plant J 90:856–867

    PubMed  Google Scholar 

  • Cleland D, Krader P, McCree C, Tang J, Emerson D (2004) Glycine betaine as a cryoprotectant for prokaryotes. J Microbiol Methods 58:31–38

    CAS  PubMed  Google Scholar 

  • Colebrook EH, Thomas SG, Phillips AL, Hedden P (2014) The role of gibberellin signalling in plant responses to abiotic stress. J Exp Biol 217:67–75

    CAS  PubMed  Google Scholar 

  • Cortleven A, Leuendorf JE, Frank M, Pezzetta D, Bolt S, Schmülling T (2019) Cytokinin action in response to abiotic and biotic stresses in plants. Plant Cell Environ 42:998–1018

    CAS  PubMed  Google Scholar 

  • Daryanto S, Wang L, Jacinthe PA (2016) Global synthesis of drought effects on maize and wheat production. PLoS ONE 11:e0156362

    PubMed  PubMed Central  Google Scholar 

  • de Freitas PAF, de Souza MR, Marques EC, Prisco JT, Gomes-Filho E (2018) Salt tolerance induced by exogenous proline in maize is related to low oxidative damage and favorable ionic homeostasis. J Plant Growth Regul 37:911–924

    Google Scholar 

  • de Freitas PAF, de Carvalho HH, Costa JH, de Souza MR, da Cruz Saraiva KD, de Oliveira FDB, Gomes-Filho E (2019) Salt acclimation in sorghum plants by exogenous proline, physiological and biochemical changes and regulation of proline metabolism. Plant Cell Rep 38:403–416

    PubMed  Google Scholar 

  • Demidchik V (2015) Mechanisms of oxidative stress in plants, from classical chemistry to cell biology. Environ Exp Bot 109:212–228

    CAS  Google Scholar 

  • Deng Y, Wang C, Huo J, Hu W, Liao W (2019) The involvement of NO in ABA-delayed the senescence of cut roses by maintaining water content and antioxidant enzymes activity. Sci Hortic 247:35–41

    CAS  Google Scholar 

  • Diao Q, Song Y, Shi D, Qi H (2017) Interaction of polyamines, abscisic acid, nitric oxide, and hydrogen peroxide under chilling stress in tomato (Lycopersicon esculentum Mill.) seedlings. Front Plant Sci 8:203

    PubMed  PubMed Central  Google Scholar 

  • Ding Y, Sheng J, Li S, Nie Y, Zhao J, Zhu Z, Wang Z, Tang X (2015) The role of gibberellins in the mitigation of chilling injury in cherry tomato (Solanum lycopersicum L.) fruit. Postharvest Biol Technol 101:88–95

    CAS  Google Scholar 

  • Ding F, Wang G, Zhang S (2018) Exogenous melatonin mitigates methyl viologen-triggered oxidative stress in poplar leaf. Molecules 23:2852

    PubMed Central  Google Scholar 

  • Dong N, Qi J, Li Y, Chen Y, Hao Y (2017) Effects of abscisic acid and nitric oxide on chilling resistance and activation of the antioxidant system in walnut shoots in vitro. J Am Soc Hortic Sci 142:376–384

    CAS  Google Scholar 

  • Duan F, Ding J, Lee D, Lu X, Feng Y, Song W (2017) Overexpression of SoCYP85A1, a spinach cytochrome p450 gene in transgenic tobacco enhances root development and drought stress tolerance. Front Plant Sci 8:1909

    PubMed  PubMed Central  Google Scholar 

  • Dubois M, Van den Broeck L, Inzé D (2018) The pivotal role of ethylene in plant growth. Trends Plant Sci 23:311–323

    CAS  PubMed  PubMed Central  Google Scholar 

  • El-Bassiouny HM, Sadak MS (2015) Impact of foliar application of ascorbic acid and α-tocopherol on antioxidant activity and some biochemical aspects of flax cultivars under salinity stress. Acta Biol Colomb 2:209–222

    Google Scholar 

  • El-Shazoly RM, Metwally AA, Hamada AM (2019) Salicylic acid or thiamin increases tolerance to boron toxicity stress in wheat. J Plant Nutr 42:702–722

    CAS  Google Scholar 

  • Esan AM, Masisi K, Dada FA, Olaiya CO (2017) Comparative effects of indole acetic acid and salicylic acid on oxidative stress marker and antioxidant potential of okra (Abelmoschus esculentus) fruit under salinity stress. Sci Hortic 216:278–283

    CAS  Google Scholar 

  • Fahad S, Bajwa AA, Nazir U, Anjum SA, Farooq A, Zohaib A, Sadia S, Nasim W, Adkins S, Saud S, Ihsan MZ, Alharby H, Wu C, Wang D, Huang J (2017) Crop production under drought and heat stress, plant responses and management options. Front Plant Sci 8:1147

    PubMed  PubMed Central  Google Scholar 

  • Fan L, Wang Q, Lv J, Gao L, Zuo J, Shi J (2016) Amelioration of postharvest chilling injury in cowpea (Vigna sinensis) by methyl jasmonate (MeJA) treatments. Sci Hortic 203:95–101

    CAS  Google Scholar 

  • Fariduddin Q, Yusuf M, Ahmad I, Ahmad A (2014) Brassinosteroids and their role in response of plants to abiotic stresses. Biol Plant 58:9–17

    CAS  Google Scholar 

  • Foyer CH, Noctor G (2005) Redox homeostasis and antioxidant signaling, a metabolic interface between stress perception and physiological responses. Plant Cell 17:1866–1875

    CAS  PubMed  PubMed Central  Google Scholar 

  • Foyer CH, Noctor G (2011) Ascorbate and glutathione, the heart of the redox hub. Plant Physiol 155:2–18

    CAS  PubMed  PubMed Central  Google Scholar 

  • Foyer CH, Noctor G (2016) Stress-triggered redox signalling: what's in pROSpect? Plant Cell Environ 39:951–964

    CAS  PubMed  Google Scholar 

  • FAO (Food and Agriculture Organization) (1996) Rome Declaration on World Food Security: 13–17 November 1996. Rome, Italy: FAO. Retrieved from. http://www.fao.org/docrep/003//w3613e/w3613e00.htm. Accessed April, 2020

  • Fritsche S, Wang X, Jung C (2017) Recent advances in our understanding of tocopherol biosynthesis in plants: an overview of key genes, functions, and breeding of vitamin E improved crops. Antioxidants 6:99

    PubMed Central  Google Scholar 

  • Gaion LA, Monteiro CC, Cruz FJR, Rossatto DR, Lopez-Diaz I, Carrera E, Lima JE, Peres LEP, Carvalho RF (2018) Constitutive gibberellin response in grafted tomato modulates root-to-shoot signaling under drought stress. J Plant Physiol 221:11–21

    CAS  PubMed  Google Scholar 

  • Gangappa SN, Srivastava AK, Maurya JP, Ram H, Chattopadhyay S (2013) Z-box binding transcription factors (ZBFs): a new class of transcription factors in Arabidopsis seedling development. Mol Plant 6:1758–1768

    CAS  PubMed  Google Scholar 

  • Gangwar S, Singh VP, Maurya JN (2011a) Responses of Pisum sativum L. to exogenous indole acetic acid application under manganese toxicity. Bull Environ Contam Toxicol 86:605

    CAS  PubMed  Google Scholar 

  • Gangwar S, Singh VP, Prasad SM, Maurya JN (2011b) Differential responses of pea seedlings to indole acetic acid under manganese toxicity. Acta Physiol Plant 33:451–462

    CAS  Google Scholar 

  • Gao W, Feng Z, Bai Q, He J, Wang Y (2019) Melatonin-mediated regulation of growth and antioxidant capacity in salt-tolerant naked oat under salt stress. Int J Mol Sci 20:1176

    CAS  PubMed Central  Google Scholar 

  • Ghaffari H, Tadayon MR, Nadeem M, Cheema M, Razmjoo J (2019) Proline-mediated changes in antioxidant enzymatic activities and the physiology of sugar beet under drought stress. Acta Physiol Plant 41:23

    Google Scholar 

  • Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48:909–930

    CAS  PubMed  Google Scholar 

  • Gill SS, Anjum NA, Hasanuzzaman M, Gill R, Trivedi DK, Ahmad I, Tuteja N (2013) Glutathione and glutathione reductase, a boon in disguise for plant abiotic stress defense operations. Plant Physiol Biochem 70:204–212

    CAS  PubMed  Google Scholar 

  • Gimenez-Ibanez S, Boter M, Solano R (2015) Novel players fine-tune plant trade-offs. Essays Biochem 58:10–1042

    Google Scholar 

  • Giri J (2011) Glycinebetaine and abiotic stress tolerance in plants. Plant Signal Behav 6:1746–1751

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gong X, Liu Y, Huang D, Zeng G, Liu S, Tang H, Zhou L, Hu X, Zhou Y, Tan X (2016) Effects of exogenous calcium and spermidine on cadmium stress moderation and metal accumulation in Boehmeria nivea (L.) Gaudich. Environ Sci Pollut Res 23:8699–8708

    CAS  Google Scholar 

  • Guo B, Liu C, Liang Y, Li N, Fu Q (2019) Salicylic acid signals plant defence against cadmium toxicity. Int J Mol Sci 20:2960

    CAS  PubMed Central  Google Scholar 

  • Gupta P, Srivastava S, Seth CS (2017) 24-Epibrassinolide and sodium nitroprusside alleviate the salinity stress in Brassica juncea L. cv. Varuna through cross talk among proline, nitrogen metabolism and abscisic acid. Plant Soil 411:483–498

    CAS  Google Scholar 

  • Gupta DK, Palma JM, Corpas FJ (2018) Antioxidants and antioxidant enzymes in higher plants. Springer, Cham

    Google Scholar 

  • Gururani MA, Venkatesh J, Tran LSP (2015) Regulation of photosynthesis during abiotic stress-induced photoinhibition. Mol Plant 8:1304–1320

    CAS  PubMed  Google Scholar 

  • Halo BA, Kha AL, Waqas M, Al-Harrasi A, Hussain J, Ali L, Adnan M, Lee IJ (2015) Endophytic bacteria (Sphingomonas sp. LK11) and gibberellin can improve Solanum lycopersicum growth and oxidative stress under salinity. J Plant Interact 10:117–125

    CAS  Google Scholar 

  • Han QH, Huang B, Ding CB, Zhang ZW, Chen YE, Hu C, Zhou LJ, Huang Y, Liao JQ, Yuan S, Yuan M (2017) Effects of melatonin on anti-oxidative systems and photosystem II in cold-stressed rice seedlings. Front Plant Sci 8:785

    PubMed  PubMed Central  Google Scholar 

  • Hardeland R (2016) Melatonin in plants–diversity of levels and multiplicity of functions. Front Plant Sci 7:198

    PubMed  PubMed Central  Google Scholar 

  • Hare PD, Cress WA (1997) Metabolic implications of stress-induced proline accumulation in plants. Plant Growth Regul 21:79–102

    CAS  Google Scholar 

  • Haroun SA, Gamel RME, Bashasha JA, Aldrussi IA (2018) Protective role of β-sitosterol or gibberellic Acid to Lycopersicum esculentum cultivars under temperature stress. Egypt J Bot 58:233–247

    Google Scholar 

  • Hasanuzzaman M, Bhuyan MB, Zulfiqar F, Raza A, Mohsin SM, Mahmud JA, Fujita M, Fotopoulos V (2020) Reactive oxygen species and antioxidant defense in plants under abiotic stress: revisiting the crucial role of a universal defense regulator. Antioxidants 9:681

    CAS  PubMed Central  Google Scholar 

  • Hassan FAS, Ali EF, Alamer KH (2018) Exogenous application of polyamines alleviates water stress-induced oxidative stress of Rosa damascena Miller var. trigintipetala Dieck. S Afr J Bot 116:96–102

    CAS  Google Scholar 

  • Hayat S, Hayat Q, Alyemeni MN, Wani AS, Pichtel J, Ahmad A (2012) Role of proline under changing environments: a review. Plant Signal Behav 7:1456–1466

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hazman M, Sühnel M, Schäfer S, Zumsteg J, Lesot A, Beltran F, Marquis V, Herrgott L, Miesch L, Riemann L, Heitz T (2019) Characterization of jasmonoyl-isoleucine (JA-Ile) hormonal catabolic pathways in rice upon wounding and salt stress. Rice 12:45

    PubMed  PubMed Central  Google Scholar 

  • He X, Richmond ME, Williams DV, Zheng W, Wu F (2019) Exogenous glycinebetaine reduces cadmium uptake and mitigates cadmium toxicity in two tobacco genotypes differing in cadmium tolerance. Int J Mol Sci 20:1612

    CAS  PubMed Central  Google Scholar 

  • Heitz T, Smirnova E, Widemann E, Aubert Y, Pinot F, Menard R (2016) The rise and fall of jasmonate biological activities. Subcell Biochem 86:405–426

    CAS  PubMed  Google Scholar 

  • Hönig M, Plíhalová L, Husičková A, Nisler J, Doležal K (2018) Role of cytokinins in senescence, antioxidant defence and photosynthesis. Int J Mol Sci 19:4045

    PubMed Central  Google Scholar 

  • Huang B, Chen YE, Zhao YQ et al (2019) Exogenous melatonin alleviates oxidative damages and protects photosystem II in maize seedlings under drought stress. Front Plant Sci 10:677

    PubMed  PubMed Central  Google Scholar 

  • Huang X, Chen MH, Yang LT, Li YR, Wu JM (2015) Effects of exogenous abscisic acid on cell membrane and endogenous hormone contents in leaves of sugarcane seedlings under cold stress. Sugar Tech 17:59–64

    CAS  Google Scholar 

  • Hussain S, Bai Z, Huang J, Cao X, Zhu L, Zhu C, Khaskheli MA, Zhong C, Jin Q, Zhang J (2019a) 1-Methylcyclopropene modulates physiological, biochemical, and antioxidant responses of rice to different salt stress levels. Front Plant Sci 10:124

    PubMed  PubMed Central  Google Scholar 

  • Hussain S, Rao MJ, Anjum MA, Ejaz S, Zakir I, Ali MA, Ahmad N, Ahmad S (2019b) Oxidative stress and antioxidant defense in plants under drought conditions. In: Hasanuzzaman M, Hakeem KR, Nahar K, Alharby HF (eds) Plant abiotic stress tolerance. Springer, Cham, pp 207–219

    Google Scholar 

  • Iglesias MJ, Terrile MC, Bartoli CG, D’Ippólito S, Casalongué CA (2010) Auxin signaling participates in the adaptative response against oxidative stress and salinity by interacting with redox metabolism in Arabidopsis. Plant Mol Biol 74:215–222

    CAS  PubMed  Google Scholar 

  • Iordachescu M, Imai R (2011) Trehalose and abiotic stress in biological systems. abiotic stress in plants-mechanisms and adaptations. InTech, Croatia, pp 215–234

    Google Scholar 

  • Jahan MS, Wang Y, Shu S, Zhong M, Chen Z, Wu J, Sun J, Guo S (2019) Exogenous salicylic acid increases the heat tolerance in Tomato (Solanum lycopersicum L.) by enhancing photosynthesis efficiency and improving antioxidant defense system through scavenging of reactive oxygen species. Sci Hortic 247:421–429

    Google Scholar 

  • Jan AU, Hadi F, Akbar F, Shah A (2019) Role of potassium, zinc and gibberellic acid in increasing drought stress tolerance in sunflower (Helianthus annuus L.). Pak J Bot 51:809–815

    Google Scholar 

  • Jang G, Yoon Y, Choi YD (2020) Crosstalk with jasmonic acid integrates multiple responses in plant development. Int J Mol Sci 21:305

    CAS  PubMed Central  Google Scholar 

  • Jiang L, Liu C, Cao H, Chen Z, Yang J, Cao S, Wei Z (2019a) The role of cytokinin in selenium stress response in Arabidopsis. Plant Sci 281:122–132

    CAS  PubMed  Google Scholar 

  • Jiang M, Ye ZH, Zhang HJ, Miao LX (2019b) Broccoli plants over-expressing an ERF transcription factor gene BoERF1 facilitates both salt stress and Sclerotinia stem rot resistance. J Plant Growth Regul 38:1–13

    Google Scholar 

  • Jung H, Lee DK, Do Choi Y, Kim JK (2015) OsIAA6, a member of the rice Aux/IAA gene family, is involved in drought tolerance and tiller outgrowth. Plant Sci 236:304–312

    CAS  PubMed  Google Scholar 

  • Kaya C, Akram NA, Ashraf M (2018a) Kinetin and indole acetic acid promote antioxidant defense system and reduce oxidative stress in maize (Zea mays L.) plants grown at boron toxicity. J Plant Growth Regul 37:1258–1266

    CAS  Google Scholar 

  • Kaya C, Ashraf M, Akram NA (2018b) Hydrogen sulfide regulates the levels of key metabolites and antioxidant defense system to counteract oxidative stress in pepper (Capsicum annuum L.) plants exposed to high zinc regime. Environ Sci Pollut R 25:12612–12618

    CAS  Google Scholar 

  • Kaya C, Aydemir S, Akram NA, Ashraf M (2018c) Epibrassinolide application regulates some key physio-biochemical attributes as well as oxidative defense system in maize plants grown under saline stress. J Plant Growth Regul 37:1244–1257

    CAS  Google Scholar 

  • Kaya C, Okant M, Ugurlar F, Alyemeni MN, Ashraf M, Ahmad P (2019a) Melatonin-mediated nitric oxide improves tolerance to cadmium toxicity by reducing oxidative stress in wheat plants. Chemosphere 225:627–638

    CAS  PubMed  Google Scholar 

  • Kaya C, Sarioğlu A, Akram NA, Ashraf M (2019b) Thiourea-mediated nitric oxide production enhances tolerance to boron toxicity by reducing oxidative stress in bread wheat (Triticum aestivum L.) and durum wheat (Triticum durum Desf.) plants. J Plant Growth Regul 38:1094–1109

    CAS  Google Scholar 

  • Khaksar G, Treesubsuntorn C, Thiravetyan P (2017) Effect of exogenous methyl jasmonate on airborne benzene removal by Zamioculcas zamiifolia, the role of cytochrome P450 expression, salicylic acid, IAA, ROS and antioxidant activity. Environ Exp Bot 138:130–138

    CAS  Google Scholar 

  • Khan MLR, Khan NA (2017) Reactive oxygen species and antioxidant systems in plants, role and regulation under abiotic stress. Springer, New York

    Google Scholar 

  • Khan MY, Prakash V, Yadav V, Chauhan DK, Prasad SM, Ramawat N, Sharma S (2019) Regulation of cadmium toxicity in roots of tomato by indole acetic acid with special emphasis on reactive oxygen species production and their scavenging. Plant Physiol Biochem 142:193–201

    CAS  PubMed  Google Scholar 

  • Khoshbakht D, Asghari MR, Haghighi M (2018) Effects of foliar applications of nitric oxide and spermidine on chlorophyll fluorescence, photosynthesis and antioxidant enzyme activities of citrus seedlings under salinity stress. Photosynthetica 56:1313–1325

    CAS  Google Scholar 

  • Kishor PK, Hong Z, Miao GH, Hu CAA, Verma DPS (1995) Overexpression of [delta]-pyrroline-5-carboxylate synthetase increases proline production and confers osmotolerance in transgenic plants. Plant Physiol 108:1387–1394

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kohli SK, Handa N, Sharma A, Gautam V, Arora S, Bhardwaj R, Ahmad P (2018) Interaction of 24-epibrassinolide and salicylic acid regulates pigment contents, antioxidative defense responses, and gene expression in Brassica juncea L. seedlings under Pb stress. Environ Sci Pollut Res 25:15159–15173

    CAS  Google Scholar 

  • Kohli SK, Handa N, Bali S, Khanna K, Arora S, Sharma A, Bhardwaj R (2019) Current scenario of Pb toxicity in plants, unraveling plethora of physiological responses. Rev Environ Contam Toxicol 249:153–197

    Google Scholar 

  • Kolbert Z, Feigl G, Freschi L, Poór P (2019) Gasotransmitters in action: nitric oxide-ethylene crosstalk during plant growth and abiotic stress responses. Antioxidants 8:167

    CAS  PubMed Central  Google Scholar 

  • Kosar F, Akram NA, Sadiq M, Al-Qurainy F, Ashraf M (2019) Trehalose: a key organic osmolyte effectively involved in plant abiotic stress tolerance. J Plant Growth Regul 38:606–618

    CAS  Google Scholar 

  • Kuznetsov VV, Shevyakova NI (1997) Stress responses of tobacco cells to high temperature and salinity. Proline accumulation and phosphorylation of polypeptides. Physiol Plant 100:320–326

    CAS  Google Scholar 

  • Li X, Jiang H, Liu F, Cai J, Dai T, Cao W, Jiang D (2013) Induction of chilling tolerance in wheat during germination by pre-soaking seed with nitric oxide and gibberellin. Plant Growth Regul 71:31–40

    CAS  Google Scholar 

  • Li M, Ahammed GJ, Li C, Bao X, Yu J, Huang C, Yin H, Zhou J (2016a) Brassinosteroid ameliorates zinc oxide nanoparticles-induced oxidative stress by improving antioxidant potential and redox homeostasis in tomato seedling. Front Plant Sci 7:615

    PubMed  PubMed Central  Google Scholar 

  • Li Z, Zhang Y, Zhang X, Peng Y, Merewitz E, Ma X, Huang L, Yan Y (2016b) The alterations of endogenous polyamines and phytohormones induced by exogenous application of spermidine regulate antioxidant metabolism, metallothionein and relevant genes conferring drought tolerance in white clover. Environ Exp Bot 124:22–38

    CAS  Google Scholar 

  • Li L, Gu W, Li C, Li W, Li C, Li J, Wei S (2018a) Exogenous spermidine improves drought tolerance in maize by enhancing the antioxidant defence system and regulating endogenous polyamine metabolism. Crop Pasture Sci 69:1076–1091

    CAS  Google Scholar 

  • Li L, Gu W, Li J, Li C, Xie T, Qu D, Wei S (2018b) Exogenously applied spermidine alleviates photosynthetic inhibition under drought stress in maize (Zea mays L.) seedlings associated with changes in endogenous polyamines and phytohormones. Plant Physiol Biochem 129:35–55

    CAS  PubMed  Google Scholar 

  • Li SW, Zeng XY, Leng Y, Feng L, Kang XH (2018c) Indole-3-butyric acid mediates antioxidative defense systems to promote adventitious rooting in mung bean seedlings under cadmium and drought stresses. Ecotoxicol Environ Saf 161:332–341

    CAS  PubMed  Google Scholar 

  • Li Z, Li Y, Zhang Y, Cheng B, Peng Y, Zhang X, Yan Y (2018d) Indole-3-acetic acid modulates phytohormones and polyamines metabolism associated with the tolerance to water stress in white clover. Plant Physiol Biochem 129:251–263

    CAS  PubMed  Google Scholar 

  • Li J, Yang Y, Sun K, Chen Y, Chen X, Li X (2019a) Exogenous melatonin enhances cold, salt and drought stress tolerance by improving antioxidant defense in tea plant (Camellia sinensis (L.) O. Kuntze). Molecules 24:1826

    CAS  PubMed Central  Google Scholar 

  • Li Q, Wang G, Guan C, Yang D, Wang Y, Zhang Y, Ji J, Jin C, An T (2019b) Overexpression of LcSABP, an orthologous gene for salicylic acid binding protein 2, enhances drought stress tolerance in transgenic tobacco. Front Plant Sci 10:200

    PubMed  PubMed Central  Google Scholar 

  • Liang C, Meng Z, Meng Z, Malik W, Yan R, Lwin KM, Lin F, Wang Y, Sun G, Zhou T, Zhu T, Li J, Jin S, Guo S, Zhang R (2016) GhABF2, a bZIP transcription factor, confers drought and salinity tolerance in cotton (Gossypium hirsutum L.). Sci Rep 6:35040

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liang D, Gao F, Ni Z, Lin L, Deng Q, Tang Y, Wang X, Xia H (2018) Melatonin improves heat tolerance in kiwifruit seedlings through promoting antioxidant enzymatic activity and glutathione S-transferase transcription. Molecules 23:584

    PubMed Central  Google Scholar 

  • Liu XL, Zhang H, Jin YY, Wang MM, Yang HY, Ma HY, Jiang CJ, Liang ZW (2019) Abscisic acid primes rice seedlings for enhanced tolerance to alkaline stress by upregulating antioxidant defense and stress tolerance-related genes. Plant Soil 438:39–55

    CAS  Google Scholar 

  • Liu Y, Huang W, Xian Z, Hu N, Lin D, Ren H, Chen J, Su D, Li Z (2017) Overexpression of SlGRAS40 in tomato enhances tolerance to abiotic stresses and influences auxin and gibberellin signaling. Front Plant Sci 8:1659

    PubMed  PubMed Central  Google Scholar 

  • Lou Y, Sun X, Chao Y, Han F, Sun M, Wang T, Wang H, Song F, Zhuge Y (2019) Glycinebetaine application alleviates salinity damage to antioxidant enzyme activity in alfalfa. Pak J Bot 51:19–25

    CAS  Google Scholar 

  • Lu T, Yu H, Li Q, Chai L, Jiang W (2019a) Improving plant growth and alleviating photosynthetic inhibition and oxidative stress from low-light stress with exogenous GR24 in tomato (Solanum lycopersicum L.) seedlings. Front Plant Sci 10:490

    PubMed  PubMed Central  Google Scholar 

  • Lu P, Magwanga RO, Kirungu JN et al (2019b) Overexpression of cotton a DTX/MATE gene enhances drought, salt and cold stress tolerance in transgenic arabidopsis. Front Plant Sci 10:299

    PubMed  PubMed Central  Google Scholar 

  • Luo P, Shen Y, Jin S, Huang S, Cheng X, Wang Z, Li P, Zhao J, Bao M, Ning G (2016) Overexpression of Rosa rugosa anthocyanidin reductase enhances tobacco tolerance to abiotic stress through increased ROS scavenging and modulation of ABA signaling. Plant Sci 245:35–49

    CAS  PubMed  Google Scholar 

  • Lv B, Tian H, Zhang F, Liu J, Lu S, Bai M, Ding Z (2018) Brassinosteroids regulate root growth by controlling reactive oxygen species homeostasis and dual effect on ethylene synthesis in Arabidopsis. PLoS Genet 14:e1007144

    PubMed  PubMed Central  Google Scholar 

  • Ma J, Qiu D, Pang Y, Gao H, Wang X, Qin Y (2020) Diverse roles of tocopherols in response to abiotic and biotic stresses and strategies for genetic biofortification in plants. Mol Breed 40:1–15

    Google Scholar 

  • Ma X, Zhang J, Huang B (2016) Cytokinin-mitigation of salt-induced leaf senescence in perennial ryegrass involving the activation of antioxidant systems and ionic balance. Environ Exp Bot 125:1–11

    CAS  Google Scholar 

  • Ma N, Hu C, Wan L, Hu Q, Xiong J, Zhang C (2017) Strigolactones improve plant growth, photosynthesis, and alleviate oxidative stress under salinity in rapeseed (Brassica napus L.) by regulating gene expression. Front Plant Sci 8:1671

    PubMed  PubMed Central  Google Scholar 

  • Madan S, Nainawatee HS, Jain RK, Chowdhury JB (1995) Proline and proline metabolising enzymes in in-vitro selected NaCl-tolerant Brassica juncea L. under salt stress. Ann Bot 76:51–57

    CAS  Google Scholar 

  • Malekzadeh P (2015) Influence of exogenous application of glycinebetaine on antioxidative system and growth of salt-stressed soybean seedlings (Glycine max L.). Physiol Mol Biol Plants 21:225–232

    CAS  PubMed  PubMed Central  Google Scholar 

  • Martinez V, Nieves-Cordones M, Lopez-Delacalle M, Rodenas R, Mestre T, Garcia-Sanchez F, Rubio F, Nortes PA, Mittler R, Rivero R (2018) Tolerance to stress combination in tomato plants, new insights in the protective role of melatonin. Molecules 23:535

    PubMed Central  Google Scholar 

  • Mattoo AK, White WB (2018) Regulation of ethylene biosynthesis. The plant hormone ethylene. CRC Press, Boca Raton, pp 21–42

    Google Scholar 

  • Merewitz EB, Liu S (2019) Improvement in heat tolerance of creeping bentgrass with melatonin, rutin, and silicon. J Am Soc Hortic Sci 144:141–148

    CAS  Google Scholar 

  • Mhamdi A, Queval G, Chaouch S, Vanderauwera S, Van Breusegem F, Noctor G (2010) Catalase function in plants, a focus on Arabidopsis mutants as stress-mimic models. J Exp Bot 61:4197–4220

    CAS  PubMed  Google Scholar 

  • Miller G, Suzuki N, Ciftci-Yilmaz S, Mittler R (2010) Reactive oxygen species homeostasis and signalling during drought and salinity stresses. Plant Cell Environ 33:453–467

    CAS  PubMed  Google Scholar 

  • Min Z, Li R, Chen L, Zhang Y, Li Z, Liu M, Ju Y, Fang Y (2019) Alleviation of drought stress in grapevine by foliar-applied strigolactones. Plant Physiol Biochem 135:99–110

    CAS  PubMed  Google Scholar 

  • Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7:405–410

    CAS  PubMed  Google Scholar 

  • Mittler R, Vanderauwera S, Gollery M, Van BF (2004) Reactive oxygen gene network of plants. Trends Plant Sci 9:490–498

    CAS  PubMed  Google Scholar 

  • Moharramnejad S, Azam AT, Panahandeh J, Dehghanian Z, Ashraf M (2019) Effect of methyl jasmonate and salicylic acid on in vitro growth, stevioside production, and oxidative defense system in Stevia rebaudiana. Sugar Tech 21:1031–1038

    CAS  Google Scholar 

  • Mostofa MG, Li W, Nguyen KH, Fujita M, Tran LSP (2018) Strigolactones in plant adaptation to abiotic stresses, an emerging avenue of plant research. Plant Cell Environ 41:2227–2243

    CAS  PubMed  Google Scholar 

  • Munné-Bosch S (2005) The role of α-tocopherol in plant stress tolerance. J Plant Physiol 162:743–748

    PubMed  Google Scholar 

  • Mustafavi SH, Badi HN, Sękara A, Mehrafarin A, Janda T, Ghorbanpour M, Rafiee H (2018) Polyamines and their possible mechanisms involved in plant physiological processes and elicitation of secondary metabolites. Acta Physiol Plant 40:102

    Google Scholar 

  • Nazir F, Hussain A, Fariduddin Q (2019) Interactive role of epibrassinolide and hydrogen peroxide in regulating stomatal physiology, root morphology, photosynthetic and growth traits in Solanum lycopersicum L. under nickel stress. Environ Exp Bot 162:479–495

    CAS  Google Scholar 

  • Nickell LG (1982) Plant growth regulators: agricultural uses. Springer, Berlin

    Google Scholar 

  • Noctor G, Foyer CH (1998) Ascorbate and glutathione, keeping active oxygen under control. Ann Rev Plant Biol 49:249–279

    CAS  Google Scholar 

  • Noctor G, Reichheld JP, Foyer CH (2018) ROS-related redox regulation and signaling in plants. Seminars in cell and developmental biology. Academic Press, Cambridge, pp 3–12

    Google Scholar 

  • Nolan T, Vukasinovic N, Liu D, Russinova E, Yin Y (2019) Brassinosteroids: multi-dimensional regulators of plant growth, development, and stress responses. Plant Cell 32:295–318

    PubMed  PubMed Central  Google Scholar 

  • Patade VY, Lokhande VH, Suprasanna P (2014) Exogenous application of proline alleviates salt induced oxidative stress more efficiently than glycine betaine in sugarcane cultured cells. Sugar Tech 16:22–29

    CAS  Google Scholar 

  • Pauwels L, Goossens A (2011) The JAZ proteins: a crucial interface in the jasmonate signaling cascade. Plant Cell 23:3089–3100

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pei H, Wang H, Wang L, Zheng F, Dong CH (2017) Regulatory function of ethylene in plant responses to drought, cold, and salt stresses. Mech Plant Horm Signal Under Stress 1:327–344

    CAS  Google Scholar 

  • Pellegrini E, Trivellini A, Cotrozzi L, Vernieri P, Nali C (2016) Involvement of phytohormones in plant responses to ozone. Plant hormones under challenging environmental factors. Springer, Dordrecht, pp 215–245

    Google Scholar 

  • Piotrowska-Niczyporuk A, Bajguz A, Zambrzycka-Szelewa E, Bralska M (2018) Exogenously applied auxins and cytokinins ameliorate lead toxicity by inducing antioxidant defence system in green alga Acutodesmus obliquus. Plant Physiol Biochem 132:535–546

    CAS  PubMed  Google Scholar 

  • Planas-Riverola A, Gupta A, Betegón-Putze I, Bosch N, Ibañes M, Caño-Delgado AI (2019) Brassinosteroid signaling in plant development and adaptation to stress. Development. https://doi.org/10.1242/dev.151894

    Article  PubMed  PubMed Central  Google Scholar 

  • Pokotylo I, Kravets V, Ruelland E (2019) Salicylic acid binding proteins (SABPs): the hidden forefront of salicylic acid signalling. Int J Mol Sci 20:4377

    CAS  PubMed Central  Google Scholar 

  • Quan W, Hu Y, Mu Z, Shi H, Chan Z (2018) Overexpression of AtPYL5 under the control of guard cell specific promoter improves drought stress tolerance in Arabidopsis. Plant Physiol Biochem 129:150–157

    CAS  PubMed  Google Scholar 

  • Raja V, Majeed U, Kang H, Andrabi KI, John R (2017) Abiotic stress, interplay between ROS, hormones and MAPKs. Environ Exp Bot 137:142–157

    CAS  Google Scholar 

  • Ramakrishna B, Rao SSR (2012) 24-Epibrassinolide alleviated zinc-induced oxidative stress in radish (Raphanus sativus L.) seedlings by enhancing antioxidative system. Plant Growth Regul 68:249–259

    CAS  Google Scholar 

  • Ramakrishna B, Rao SSR (2013) 24-Epibrassinolide maintains elevated redox state of AsA and GSH in radish (Raphanus sativus L.) seedlings under zinc stress. Acta Physiol Plant 35:1291–1302

    CAS  Google Scholar 

  • Rameau C, Goormachtig S, Cardinale F, Bennett T, Cubas P (2019) Strigolactones as plant hormones. Strigolactones-biology and applications. Springer, Cham, pp 47–87

    Google Scholar 

  • Riemann M, Dhakarey R, Hazman M, Miro B, Kohli A, Nick P (2015) Exploring jasmonates in the hormonal network of drought and salinity responses. Front Plant Sci 6:1077

    PubMed  PubMed Central  Google Scholar 

  • Russell G, Zulfiqar F, Hancock JT (2020) Hydrogenases and the role of molecular hydrogen in plants. Plants 9:1136

    CAS  PubMed Central  Google Scholar 

  • Sadak MS, El-Bassiouny HMS, Dawood MG (2019) Role of trehalose on antioxidant defense system and some osmolytes of quinoa plants under water deficit. Bull Nat Res Cen 43:5

    Google Scholar 

  • Sadiq M, Akram NA, Ashraf M (2018) Impact of exogenously applied tocopherol on some key physio-biochemical and yield attributes in mungbean [Vigna radiata (L.) Wilczek] under limited irrigation regimes. Acta Phys Plant 40:131

    Google Scholar 

  • Sadiq M, Akram NA, Ashraf M, Al-Qurainy F, Ahmad P (2019) Alpha-tocopherol-induced regulation of growth and metabolism in plants under non-stress and stress conditions. J Plant Growth Regul 38:1325–1340

    CAS  Google Scholar 

  • Saeidi-Sar S, Abbaspour H, Afshari H, Yaghoobi SR (2013) Effects of ascorbic acid and gibberellin A3 on alleviation of salt stress in common bean (Phaseolus vulgaris L.) seedlings. Acta Physiol Plant 35:667–677

    CAS  Google Scholar 

  • Sah SK, Reddy KR, Li J (2016) Abscisic acid and abiotic stress tolerance in crop plants. Front Plant Sci 7:571

    PubMed  PubMed Central  Google Scholar 

  • Samadi S, Habibi G, Vaziri A (2019) Effects of exogenous salicylic acid on antioxidative responses, phenolic metabolism and photochemical activity of strawberry under salt stress. Plant Physiol 9:2685–2694

    Google Scholar 

  • Samea-Andabjadid S, Ghassemi-Golezani K, Nasrollahzadeh S, Najafi N (2018) Exogenous salicylic acid and cytokinin alter sugar accumulation, antioxidants and membrane stability of faba bean. Acta Biol Hung 69:86–96

    CAS  PubMed  Google Scholar 

  • Sang QQ, Shu S, Shan X, Guo SR, Sun J (2016) Effects of exogenous spermidine on antioxidant system of tomato seedlings exposed to high temperature stress. Russ J Plant Physiol 63:645–655

    CAS  Google Scholar 

  • Sarabandi M, Farokhzad A, Mandoulakani BA, Ghasemzadeh R (2019) Biochemical and gene expression responses of two Iranian grape cultivars to foliar application of methyl jasmonate under boron toxicity conditions. Sci Hortic 249:355–363

    CAS  Google Scholar 

  • Saradhi PP, AliaArora S, Prasad KVSK (1995) Proline accumulates in plants exposed to UV radiation and protects them against UV-induced peroxidation. Biochem Biophys Res Commun 209:1–5

    CAS  PubMed  Google Scholar 

  • Savvides A, Ali S, Tester M, Fotopoulos V (2016) Chemical priming of plants against multiple abiotic stresses, mission possible? Trends Plant Sci 21:329–340

    CAS  PubMed  Google Scholar 

  • Sedaghat M, Tahmasebi-Sarvestani Z, Emam Y, Mokhtassi-Bidgoli A (2017) Physiological and antioxidant responses of winter wheat cultivars to strigolactone and salicylic acid in drought. Plant Physiol Biochem 119:59–69

    CAS  PubMed  Google Scholar 

  • Shafiq S, Akram NA, Ashraf M (2015) Does exogenously-applied trehalose alter oxidative defense system in the edible part of radish (Raphanus sativus L.) under water-deficit conditions? Sci Hortic 185:68–75

    CAS  Google Scholar 

  • Shahbaz M, Abid A, Masood A, Waraich EA (2017) Foliar-applied trehalose modulates growth, mineral nutrition, photosynthetic ability, and oxidative defense system of rice (Oryza sativa L.) under saline stress. J Plant Nutr 40:584–599

    CAS  Google Scholar 

  • Shahzad B, Tanveer M, Che Z, Rehman A, Cheema SA, Sharma A, Song H, ur Rehman S, Zhaorong D (2018) Role of 24-epibrassinolide (EBL) in mediating heavy metal and pesticide induced oxidative stress in plants, a review. Ecotoxicol Environ Saf 147:935–944

    CAS  PubMed  Google Scholar 

  • Shams M, Yildirim E, Ekinci M, Turan M, Dursun A, Parlakova F, Kul R (2016) Exogenously applied glycine betaine regulates some chemical characteristics and antioxidative defence systems in lettuce under salt stress. Hortic Environ Biotechnol 57:225–231

    CAS  Google Scholar 

  • Shao HB, Chul LY, Lu ZH, Kang CM (2008) Primary antioxidant free radical scavenging and redox signaling pathways in higher plant cells. Int J Biol Sci 4:8–14

    CAS  Google Scholar 

  • Sharma I, Ching E, Saini S, Bhardwaj R, Pati PK (2013) Exogenous application of brassinosteroid offers tolerance to salinity by altering stress responses in rice variety Pusa Basmati-1. Plant Physiol Biochem 69:17–26

    CAS  PubMed  Google Scholar 

  • Sharma I, Bhardwaj R, Pati PK (2015) Exogenous application of 28-homobrassinolide modulates the dynamics of salt and pesticides induced stress responses in an elite rice variety Pusa Basmati-1. J Plant Growth Regul 34:509–518

    CAS  Google Scholar 

  • Sharma P, Sharma P, Arora P, Verma V, Khanna K, Saini P, Bhardwaj R (2019) Role and regulation of ROS and antioxidants as signaling molecules in response to abiotic stresses. Plant signaling molecules. Woodhead Publishing Limited, Cambridge, pp 141–156

    Google Scholar 

  • Shehzadi A, Akram NA, Ali A, Ashraf M (2019) Exogenously applied glycinebetaine induced alteration in some key physio-biochemical attributes and plant anatomical features in water stressed oat (Avena sativa L.) plants. J Arid Land 11:292–305

    Google Scholar 

  • Shi WG, Li H, Liu TX, Polle A, Peng CH, Luo ZB (2015) Exogenous abscisic acid alleviates zinc uptake and accumulation in Populus× canescens exposed to excess zinc. Plant Cell Environ 38:207–223

    CAS  PubMed  Google Scholar 

  • Shi WG, Liu W, Yu W et al (2019) Abscisic acid enhances lead translocation from the roots to the leaves and alleviates its toxicity in Populus× canescens. J Hazard Mater 362:275–285

    CAS  PubMed  Google Scholar 

  • Shin SY, Kim YS, Kim IS, Kim YH, Park HM, Yoon HS (2014) The expression of BrMDHAR gene in chloroplasts and mitochondria enhances tolerance to freezing stress in Arabidopsis thaliana. Biol Plant 58:456–468

    CAS  Google Scholar 

  • Siboza XI, Bertling I, Odindo AO (2017) Enzymatic antioxidants in response to methyl jasmonate and salicylic acid and their effect on chilling tolerance in lemon fruit [Citrus limon (L.) Burm. F.]. Sci Hortic 225:659–667

    CAS  Google Scholar 

  • Silva VA, Prado FM, Antunes WC, Paiva RMC, Ferrão MAG, Andrade AC, Mascio PD, Loureiro ME, DaMatta FM, Almeida AM (2018) Reciprocal grafting between clones with contrasting drought tolerance suggests a key role of abscisic acid in coffee acclimation to drought stress. Plant Growth Regul 85:221–229

    CAS  Google Scholar 

  • Silverstone AL, Sun T (2000) Gibberellins and the green revolution. Trends Plant Sci 5:1–2

    CAS  PubMed  Google Scholar 

  • Singh M, Bashri G, Prasad SM, Singh VP (2019) Kinetin alleviates UV-B-induced damage in Solanum lycopersicum, Implications of phenolics and antioxidants. J Plant Growth Regul 38:831–841

    CAS  Google Scholar 

  • Singh M, Kumar J, Singh S, Singh VP, Prasad SM (2015) Roles of osmoprotectants in improving salinity and drought tolerance in plants, a review. Rev Environ Sci Biotechnol 14:407–426

    CAS  Google Scholar 

  • Srivastava AK, Pasala R, Minhas PS, Suprasanna P (2016) Plant bioregulators for sustainable agriculture, integrating redox signaling as a possible unifying mechanism. Advances in agronomy, vol 137. Academic Press, Cambridge, pp 237–278

    Google Scholar 

  • Surgun-Acar Y, Zemheri-Navruz F (2019) 24-Epibrassinolide promotes arsenic tolerance in Arabidopsis thaliana L. by altering stress responses at biochemical and molecular level. J Plant Physiol 238:12–19

    CAS  PubMed  Google Scholar 

  • Tai Z, Yin X, Fang Z, Shi G, Lou L, Cai Q (2017) Exogenous GR24 alleviates cadmium toxicity by reducing cadmium uptake in switchgrass (Panicum virgatum) seedlings. Int J Environ Res Public Health 14:852

    PubMed Central  Google Scholar 

  • Talaat NB, Shawky BT, Ibrahim AS (2015) Alleviation of drought-induced oxidative stress in maize (Zea mays L.) plants by dual application of 24-epibrassinolide and spermine. Environ Exp Bot 113:47–58

    CAS  Google Scholar 

  • Tamás L, Mistrík I, Alemayehu A, Zelinová V, Bočová B, Huttová J (2015) Salicylic acid alleviates cadmium-induced stress responses through the inhibition of Cd-induced auxin-mediated reactive oxygen species production in barley root tips. J Plant Physiol 173:1–8

    PubMed  Google Scholar 

  • Tanveer M, Shahzad B, Sharma A, Biju S, Bhardwaj R (2018) 24-Epibrassinolide; an active brassinolide and its role in salt stress tolerance in plants, a review. Plant Physiol Biochem 130:69–79

    CAS  PubMed  Google Scholar 

  • Tian Y, Fan M, Qin Z, Lv H, Wang M, Zhang Z, Ding Z (2018) Hydrogen peroxide positively regulates brassinosteroid signaling through oxidation of the BRASSINAZOLE-RESISTANT1 transcription factor. Nat Commun 9:1063

    PubMed  PubMed Central  Google Scholar 

  • Tognetti VB, Mühlenbock PER, Van Breusegem F (2012) Stress homeostasis–the redox and auxin perspective. Plant Cell Environ 35:321–333

    CAS  PubMed  Google Scholar 

  • Tuteja N (2007) Abscisic acid and abiotic stress signaling. Plant Signal Behav 2:135–138

    PubMed  PubMed Central  Google Scholar 

  • Van Rensburg L, Krüger GHJ, Krüger H (1993) Proline accumulation as drought-tolerance selection criterion: its relationship to membrane integrity and chloroplast ultrastructure in Nicotiana tabacum L. J Plant Physiol 141:188–194

    Google Scholar 

  • Vishwakarma K, Upadhyay N, Kumar N, Yadav G, Singh J, Mishra RK, Sharma S (2017) Abscisic acid signaling and abiotic stress tolerance in plants: a review on current knowledge and future prospects. Front Plant Sci 8:161

    PubMed  PubMed Central  Google Scholar 

  • Wang C, Lu G, Hao Y, Guo H, Guo Y, Zhao J, Cheng H (2017) ABP9, a maize bZIP transcription factor, enhances tolerance to salt and drought in transgenic cotton. Planta 246:453–469

    CAS  PubMed  Google Scholar 

  • Wang H, Ding Q, Shao H, Wang H (2019a) Overexpression of kvp5cs1 increases salt tolerance in transgenic tobacco. Pak J Bot 51:831–836

    CAS  Google Scholar 

  • Wang M, Qiao J, Yu C, Chen H, Sun C, Huang L, Li C, Geisler M, Qian Q, Jiang DA, Qi Y (2019b) The auxin influx carrier, OsAUX3, regulates rice root development and responses to aluminium stress. Plant Cell Environ 42:1125–1138

    CAS  PubMed  Google Scholar 

  • Wang YH, Zhang G, Chen Y, Gao J, Sun YR, Sun MF, Chen JP (2019c) Exogenous application of gibberellic acid and ascorbic acid improved tolerance of okra seedlings to NaCl stress. Acta Physiol Plant 41:93

    CAS  Google Scholar 

  • Wani SH, Kumar V, Shriram V, Sah SK (2016) Phytohormones and their metabolic engineering for abiotic stress tolerance in crop plants. Crop J 4:162–176

    Google Scholar 

  • Werner JE, Finkelstein RR (1995) Arabidopsis mutants with reduced response to NaCl and osmotic stress. Physiol Plant 93:659–666

    CAS  Google Scholar 

  • Wu XX, Chen JL, Xu S, Zhu ZW, Zha DS (2016) Exogenous 24-epibrassinolide alleviates zinc-induced toxicity in eggplant (Solanum melongena L.) seedlings by regulating the glutathione-ascorbate-dependent detoxification pathway. J Hortic Sci Biotechnol 91:412–420

    CAS  Google Scholar 

  • Wu S, Hu C, Tan Q, Zhao X, Xu S, Xia Y, Sun X (2018) Nitric oxide acts downstream of abscisic acid in molybdenum-induced oxidative tolerance in wheat. Plant Cell Rep 37:599–610

    CAS  PubMed  Google Scholar 

  • Wu C, Li F, Xu H, Zeng W, Yu R, Wu X, Shen L, Liu Y, Li J (2019) The potential role of brassinosteroids (BRs) in alleviating antimony (Sb) stress in Arabidopsis thaliana. Plant Physiol Biochem 141:51–59

    CAS  PubMed  Google Scholar 

  • Xia XJ, Zhou YH, Shi K, Zhou J, Foyer CH, Yu JQ (2015) Interplay between reactive oxygen species and hormones in the control of plant development and stress tolerance. J Exp Bot 66:2839–2856

    CAS  PubMed  Google Scholar 

  • Xie DX, Feys BF, James S, Nieto-Rostro M, Turner JG (1998) COI1: an Arabidopsis gene required for jasmonate-regulated defense and fertility. Science 280:1091–1094

    CAS  PubMed  Google Scholar 

  • Xing X, Jiang H, Zhou Q, Xing H, Jiang H, Wang S (2016) Improved drought tolerance by early IAA-and ABA-dependent H2O2 accumulation induced by α-naphthaleneacetic acid in soybean plants. Plant Growth Regul 80:303–314

    CAS  Google Scholar 

  • Yang CJ, Zhang C, Lu YN, Jin JQ, Wang XL (2011) The mechanisms of brassinosteroids' action: from signal transduction to plant development. Mol Plant 4:588–600

    CAS  PubMed  Google Scholar 

  • Yang J, Duan G, Li C, Liu L, Han G, Zhang Y, Wang C (2019) The crosstalks between jasmonic acid and other plant hormone signaling highlight the involvement of jasmonic acid as a core component in plant response to biotic and abiotic stresses. Front Plant Sci 10:1349

    PubMed  PubMed Central  Google Scholar 

  • Yao C, Zhang F, Sun X, Shang D, He F, Li X, Zhang J, Jiang X (2019) Effects of S-abscisic acid (S-ABA) on seed germination, seedling growth, and Asr1 gene expression under drought stress in maize. J Plant Growth Regul 38:1300–1313

    CAS  Google Scholar 

  • Ye YR, Wang WL, Zheng CS, Fu DJ, Liu HW, Shen X (2017) Foliar-application of α-tocopherol enhanced salt tolerance of Carex leucochlora. Biol Plant 61:565–570

    CAS  Google Scholar 

  • Yildirim E, Ekinci M, Turan M, Dursun A, Kul R, Parlakova F (2015) Roles of glycine betaine in mitigating deleterious effect of salt stress on lettuce (Lactuca sativa L.). Arch Agron Soil Sci 61:1673–1689

    CAS  Google Scholar 

  • Yu W, Sheng J, Zhao R, Wang Q, Ma P, Shen L (2019) Ethylene biosynthesis is involved in regulating chilling tolerance and SlCBF1 gene expression in tomato fruit. Postharvest Biol Technol 149:139–147

    CAS  Google Scholar 

  • Yu Y, Zhou W, Zhou K, Liu W, Liang X, Chen Y, Sun D, Lin X (2018) Polyamines modulate aluminum-induced oxidative stress differently by inducing or reducing H2O2 production in wheat. Chemosphere 212:645–653

    CAS  PubMed  Google Scholar 

  • Zhang L, Becker D (2015) Connecting proline metabolism and signaling pathways in plant senescence. Front Plant Sci 6:552

    PubMed  PubMed Central  Google Scholar 

  • Zhang Q, Zhang L, Geng B, Feng J, Zhu S (2019) Interactive effects of abscisic acid and nitric oxide on chilling resistance and active oxygen metabolism in peach fruit during cold storage. J Sci Food Agric 99:3367–3380

    CAS  PubMed  Google Scholar 

  • Zhao D, Yu Y, Shen Y, Liu Q, Zhao Z, Sharma R, Reiter RJ (2019a) Melatonin synthesis and function: evolutionary history in animals and plants. Front Endocrinol 10:249

    Google Scholar 

  • Zhao DQ, Li TT, Hao ZJ, Cheng ML, Tao J (2019b) Exogenous trehalose confers high temperature stress tolerance to herbaceous peony by enhancing antioxidant systems, activating photosynthesis, and protecting cell structure. Cell Stress Chaperon 24:247–257

    CAS  Google Scholar 

  • Zhu JK (2002) Salt and drought stress signal transduction in plants. Annu Rev Plant Physiol Plant Mol Biol 53:247–273

    CAS  Google Scholar 

  • Zouari M, Elloumi N, Ahmed CB, Delmail D, Rouina BB, Abdallah FB, Labrousse P (2016) Exogenous proline enhances growth, mineral uptake, antioxidant defense, and reduces cadmium-induced oxidative damage in young date palm (Phoenix dactylifera L.). Ecol Eng 86:202–209

    Google Scholar 

  • Zouari M, Elloumi N, Labrousse P, Rouina BB, Abdallah FB, Ahmed CB (2018) Olive trees response to lead stress, exogenous proline provided better tolerance than glycine betaine. S Afr J Bot 118:158–165

    CAS  Google Scholar 

  • Zulfiqar F, Hancock JT (2020) Hydrogen sulfide in horticulture: emerging roles in the era of climate change. Plant Physiol Biochem 155:667–675

    CAS  PubMed  Google Scholar 

  • Zulfiqar F, Younis A, Abideen Z, Francini A, Ferrante A (2019) Bioregulators can improve biomass production, photosynthetic efficiency, and ornamental quality of Gazania rigensL. Agronomy 9:773

    CAS  Google Scholar 

  • Zulfiqar F, Akram NA, Ashraf M (2020) Osmoprotection in plants under abiotic stresses: new insights into a classical phenomenon. Planta 251:3

    CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge Prof. Phil Harris, Coventry University, UK for his critical reading of the whole manuscript.

Author information

Authors and Affiliations

Authors

Contributions

MA conceived the idea and helped in revising manuscript. FZ contributed in literature collection, writing of manuscript, tables and figures. Both Authors reviewed and updated the manuscript.

Corresponding author

Correspondence to Faisal Zulfiqar.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zulfiqar, F., Ashraf, M. Bioregulators: unlocking their potential role in regulation of the plant oxidative defense system. Plant Mol Biol 105, 11–41 (2021). https://doi.org/10.1007/s11103-020-01077-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-020-01077-w

Keywords

Navigation