Skip to main content
Log in

Overexpression of SlMYB75 enhances resistance to Botrytis cinerea and prolongs fruit storage life in tomato

  • Original Article
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Key message

SlMYB75 increased the accumulation of JA and improved the scavenging of excess H 2 O 2 to resist B. cinerea. Overexpression of SlMYB75 greatly prolongs tomato fruit storage life.

Abstract

Botrytis cinerea (B. cinerea) is a major threat to the production and storage life of tomato (Solanum lycopersicum) fruit around the world. SlMYB75 is an R2R3MYB transcription factor associated with the biosynthesis of anthocyanidin, but little is known about its function in the resistance of tomato to B. cinerea. In this study, we found that the overexpression of SlMYB75 regulated the accumulation of jasmonic acid (JA) and promoted the JA-mediated signaling pathway to resist B. cinerea infection. Moreover, the activities of peroxidase and superoxide dismutase, which were activated to scavenge hydrogen peroxide produced as a result of the B. cinerea infection, were enhanced in the transgenic tomato plants. Scanning electron microscopy images showed that the wax on the fruit skin surface was significantly decreased in the transgenic tomatoes compared with the wild type. However, SlMYB75 prolonged fruit storage life by both enhancing resistance to B. cinerea and directly downregulating the fruit shelf life-related gene SlFSR. Collectively, this study provides a good candidate gene for breeding high-quality tomatoes with a long storage life and high disease resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • An JP, Wang XF, Li YY, Song LQ, Zhao LL, You CX, Hao YJ (2018) EIN3-LIKE1, MYB1, and ethylene response FACTOR3 act in a regulatory loop that synergistically modulates ethylene biosynthesis and anthocyanin accumulation. Plant Physiol 178:808–823

    CAS  PubMed  PubMed Central  Google Scholar 

  • An JP, Wang XF, Zhang XW, Xu HF, Bi SQ, You CX, Hao YJ (2020) An apple MYB transcription factor regulates cold tolerance and anthocyanin accumulation and undergoes MIEL1-mediated degradation. Plant Biotechnol J 18:337–353

    CAS  PubMed  Google Scholar 

  • An JP, Zhang XW, You CX, Bi SQ, Wang XF, Hao YJ (2019) MdWRKY40 promotes anthocyanin biosynthesis by enhancing the transcriptional activity of MdMYB1 and undergoes MdBT2-mediated degradation. New Phytol 224:380–395

    CAS  PubMed  Google Scholar 

  • An XH, Hao YJ, Li EM, Xu K, Cheng CG (2017) Functional identification of apple MdJAZ2 in Arabidopsis with reduced JA-sensitivity and increased stress tolerance. Plant Cell Rep 36:255–265

    CAS  PubMed  Google Scholar 

  • Baldwin E, Plotto A, Narciso J, Bai J (2011) Effect of 1-methylcyclopropene on tomato flavour components, shelf life and decay as influenced by harvest maturity and storage temperature. J Sci Food Agr 91:969–980

    CAS  Google Scholar 

  • Bernoux M, Ellis JG, Dodds PN (2011) New insights in plant immunity signaling activation. Curr Opin Plant Biol 14:512–518

    CAS  PubMed  PubMed Central  Google Scholar 

  • Brummell DA, Harpster MH (2001) Cell wall metabolism in fruit softening and quality and its manipulation in transgenic plants. Plant Mol Biol 47:311–340

    CAS  PubMed  Google Scholar 

  • Brummell DA, Harpster MH, Civello PM, Palys JM, Bennett AB, Dunsmuir P (1999) Modification of expansin protein abundance in tomato fruit alters softening and cell wall polymer metabolism during ripening. Plant Cell 11:2203–2216

    CAS  PubMed  PubMed Central  Google Scholar 

  • Buanafina MM, Dalton S, Langdon T, Timms-Taravella E, Shearer EA, Morris P (2015) Functional co-expression of a fungal ferulic acid esterase and a β-1,4 endoxylanase in Festuca arundinacea (tall fescue) modifies post-harvest cell wall deconstruction. Planta 242:97–111

    CAS  PubMed  Google Scholar 

  • Cantu D, Blanco-Ulate B, Yang L, Labavitch JM, Bennett AB, Powell ALT (2009) Ripening-regulated susceptibility of tomato fruit to Botrytis cinerea requires NOR but not RIN or ethylene. Plant Physiol 150:1434–1449

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chung M, Vrebalov J, Alba R, Lee J, McQuinn R, Chung J, Klein P, Giovannoni J (2010) A tomato (Solanum lycopersicum) APETALA2/ERF gene, SlAP2a, is a negative regulator of fruit ripening. Plant J 64:936–947

    CAS  PubMed  Google Scholar 

  • Cremer KD, Mathys J, Vos C, Froenicke L, Michelmore RW, Cammue BPA, Coninck DB (2013) RNAseq-based transcriptome analysis of Lactuca sativa infected by the fungal necrotroph Botrytis cinerea. Plant Cell Environ 36:1992–2007

    PubMed  Google Scholar 

  • Du MM, Zhao JH, Tzeng DTW, Liu YY, Deng L, Yang TX, Zhai QZ, Wu FM, Huang Z, Zhou M, Wang QM, Chen Q, Zhong SL, Li CB, Li CY (2017) MYC2 orchestrates a hierarchical transcriptional cascade that regulates Jasmonate-mediated plant immunity in tomato. Plant Cell 29:1883–1906

    CAS  PubMed  PubMed Central  Google Scholar 

  • Du ZK, Zhu LS, Dong M, Wang JH, Wang J, Xie H, Zhu SY (2012) Effects of the ionic liquid [Omim]PF6 on antioxidant enzyme systems, ROS and DNA damage in zebrafish (Danio rerio). Aquat Toxicol 124–125:91–93

    PubMed  Google Scholar 

  • El Oirdi M, El Rahman TA, Rigano L, El Hadrami A, Rodriguez MC, Daayf F, Vojnov A, Bouarab K (2011) Botrytis cinerea manipulates the antagonistic effects between immune pathways to promote disease development in tomato. Plant Cell 23:2405–2421

    PubMed  PubMed Central  Google Scholar 

  • Elad Y, Williamson B, Tudzynski P, Delen N (2007) Botrytis spp. and diseases they cause in agricultural systems—an introduction Botrytis: Biology, pathology and control. Springer, London

    Google Scholar 

  • El-Sharkawy I, Sherif S, El Kayal W, Jones B, Li Z, Sullivan AJ, Jayasankar S (2016) Overexpression of plum auxin receptor PslTIR1 in tomato alters plant growth, fruit development and fruit shelf-life characteristics. BMC Plant Biol 16:56

    CAS  PubMed  PubMed Central  Google Scholar 

  • Feng SQ, Wang YL, Yang S, Xu YT, Chen XS (2010) Anthocyanin biosynthesis in pears is regulated by a R2R3-MYB transcription factor PyMYB10. Planta 232:245–255

    CAS  PubMed  Google Scholar 

  • Gao Y, Jia S, Wang C, Wang F, Wang F, Zhao K (2016) BjMYB1, a transcription factor implicated in plant defence through activating, BjCHI1, chitinase expression by binding to a w-box-like element. J Exp Bot 67:4647–4658

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hu DG, Sun CH, Ma QJ, You CX, Cheng LL, Hao YJ (2016) MdMYB1 regulates anthocyanins and malate accumulation by directly facilitating their transport into the vacuoles in apples. Plant Physiol 170:1315–1330

    CAS  PubMed  Google Scholar 

  • Jian W, Cao HH, Yuan S, Liu YD, Lu JF, Lu W, Li N, Wang JH, Zou J, Tang N, Xu C, Cheng YL, Gao YQ, Xi WP, Bouzayen M, Li ZG (2019) SlMYB75, an MYB-type transcription factor, promotes anthocyanin accumulation and enhances volatile aroma production in tomato fruit. Hortic Res 6:22

    PubMed  PubMed Central  Google Scholar 

  • Kong WW, Chen N, Liu TT, Zhu J, Wang JQ, He XQ, Jin Y (2015) Large-scale transcriptome analysis of cucumber and Botrytis cinerea during infection. PLoS ONE 10:e0142221

    PubMed  PubMed Central  Google Scholar 

  • Koornneef A, Pieterse CMJ (2018) Cross talk in defense signaling. Plant Physiol 146:839–844

    Google Scholar 

  • Kramer M, Sanders R, Bolkan H, Waters C, Sheeny RE, Hiatt WR (1992) Postharvest evaluation of transgenic tomatoes with reduced levels of polygalacturonase: processing, firmness and disease resistance. Postharvest Biol Tec 1:241–255

    CAS  Google Scholar 

  • Li PC, Yu SW, Shen J, Li QQ, Li DP, Li DQ, Zheng CC, Shu HR (2014) The transcriptional response of apple alcohol acyltransferase (MdAAT2) to salicylic acid and ethylene is mediated through two apple MYB TFs in transgenic tobacco. Plant Mol Biol 85:627–638

    CAS  PubMed  Google Scholar 

  • Li Y, Chen M, Wang SL, Ning J, Ding XG, Chu ZH (2015) AtMYB11 regulates caffeoylquinic acid and flavonol synthesis in tomato and tobacco. Plant Cell Tiss Org 122:309–319

    CAS  Google Scholar 

  • Li YY, Mao K, Zhao C, Zhao XY, Zhang HL, Shu HR, Hao YJ (2012) Ubiquitin E3 ligases MdCOP1s interact with MdMYB1 to regulate the light-induced anthocyanin biosynthesis and red fruit coloration in apple. Plant Physiol 160:1011–1022

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liang D, Huang XJ, Shen YQ, Shen T, Zhang HF, Lin LJ, Wang J, Deng QX, Lyu XL, Xia H (2019) Hydrogen cyanamide induces grape bud endodormancy release through carbohydrate metabolism and plant hormone signaling. BMC Genom 20:1034

    CAS  Google Scholar 

  • Liu D, Zhou L, Fang M, Dong Q, An X, You C, Hao Y (2016) Polycomb-group protein SlMSI1 represses the expression of fruit-ripening genes to prolong shelf life in tomato. Sci Rep-UK 6:31806

    CAS  Google Scholar 

  • Liu MY, Zhang CJ, Duan LX, Luan QQ, Li JL, Yang AG, Qi XQ, Ren ZH (2019) CsMYB60 is a key regulator of flavonols and proanthocyanidans that determine the colour of fruit spines in cucumber. J Exp Bot 70:69–84

    CAS  PubMed  Google Scholar 

  • Luan QQ, Chen CH, Liu MY, Li Q, Wang LN, Ren ZH (2019) CsWRKY50 mediates defense responses to Pseudoperonospora cubensis infection in Cucumis sativus. Plant Sci 279:59–69

    CAS  PubMed  Google Scholar 

  • Luo HL, Laluk K, Lai ZB, Veronese P, Song FM, Mengiste T (2010) The Arabidopsis botrytis susceptible1 interactor defines a subclass of RING E3 ligases that regulate pathogen and stress responses. Plant Physiol 154:1766–1782

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ma QB, Dai XY, Xu YY, Guo J, Liu YJ, Chen N, Xiao J, Zhang DJ, Zhang XS, Xu ZH, Chong K (2009) Enhanced tolerance to chilling stress in OsMYB3R-2 transgenic rice is mediated by alteration in cell cycle and ectopic expression of stress genes. Plant Physiol 150:244–256

    CAS  PubMed  PubMed Central  Google Scholar 

  • Maul F, Sargent SA, Sims CA, Baldwin EA, Balaban MO, Huber DJ (2000) Tomato flavour and aroma quality as affected by storage temperature. J Food Sci 651:228–1237

    Google Scholar 

  • Meli VS, Ghosh S, Prabha TN, Chakraborty N, Chakraborty S, Datta A (2010) Enhancement of fruit shelf life by suppressing N-glycan processing enzymes. Proc Natl Acad Sci USA 107:2413–2418

    CAS  PubMed  Google Scholar 

  • Meng X, Wang JR, Wang GD, Liang XQ, Li XD, Meng QW (2015a) An R2R3-MYB gene, LeAN2, positively regulated the thermo-tolerance in transgenic tomato. J Plant Physiol 1:751–758

    Google Scholar 

  • Meng X, Yang DY, Li XD, Zhao SY, Sui N, Meng QW (2015b) Physiological changes in fruit ripening caused by overexpression of tomato SlAN2, an R2R3-MYB factor. Plant Physiol Bioch 89:24–30

    CAS  Google Scholar 

  • Meng X, Yin B, Feng LH, Zhang S, Liang XQ, Meng QW (2014) Overexpression of R2R3-MYB gene leads to accumulation of anthocyanin and enhanced resistance to chilling and oxidative stress. Biol Plantarum 58:121–130

    CAS  Google Scholar 

  • Mengiste T (2012) Plant immunity to necrotrophs. Annu Rev Phytopathol 50:267–294

    CAS  PubMed  Google Scholar 

  • Ouyang Z, Liu S, Huang L, Hong Y, Li X, Zhang Y, Zhang H, Li D, Song F (2016) Tomato SlERFA1, SlERF.B4, SlERF.C3 and SlERF.A3, members of B3 Group of ERF family, are required for resistance to Botrytis cinerea. Front Plant Sci 7:164

    Google Scholar 

  • Owino WO, Ambuko JL, Mathooko FM (2005) Molecular basis of cell wall degradation during fruit ripening and senescence. Stewart Postharvest Review 1:1–10

    Google Scholar 

  • Pieterse CM, Leon-Reyes A, Van der Ent S, Van Wees SC (2009) Networking by small-molecule hormones in plant immunity. Nat Chem Biol 5:308–316

    CAS  PubMed  Google Scholar 

  • Ramirez V, Agorio A, Coego A, Garcia-Andrade J, Hernandez MJ, Balaguer B, Ouwerkerk PBF, Zarra I, Vera P (2011) MYB46 modulates disease susceptibility to Botrytis cinerea in Arabidopsis. Plant Physiol 155:1920–1935

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shah P, Powell ALT, Orlando R, Bergmann C, Gutierrez-Sanchez G (2012) Proteomic analysis of ripening tomato fruit infected by Botrytis cinerea. J Proteome Res 11:2178–2192

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shim JS, Jung C, Lee S, Min K, Lee YW, Choi Y, Lee JS, Song JT, Kim JK, Choi YD (2013) AtMYB44 regulates WRKY70 expression and modulates antagonistic interaction between salicylic acid and jasmonic acid signaling. Plant J 73:483–495

    CAS  PubMed  Google Scholar 

  • Smith DL, Abbott JA, Gross KC (2002) Down-regulation of tomato β-galactosidase 4 results in decreased fruit softening. Plant Physiol 129:1755–1762

    CAS  PubMed  PubMed Central  Google Scholar 

  • Smith JE, Mengesha B, Tang H, Mengiste T, Bluhm BH (2014) Resistance to Botrytis cinerea in Solanum lycopersicoides involves widespread transcriptional reprogramming. BMC Genom 15:334

    Google Scholar 

  • Stefanato FL, Abou-Mansour E, Buchala A, Kretschmer M, Mosbach A, Hahn M, Bochet CG, Métraux J, Schoonbeek H (2009) The ABC transporter BcatrB from Botrytis cinerea exports camalexin and is a virulence factor on Arabidopsis thaliana. Plant J 58:499–510

    CAS  PubMed  Google Scholar 

  • Sun TY, Xu LL, Sun H, Yue QY, Zhai H, Yao YX (2017) VvVHP1; 2 is transcriptionally activated by VvMYBA1 and promotes anthocyanin accumulation of grape berry skins via glucose signal. Front Plant Sci 8:1811

    PubMed  PubMed Central  Google Scholar 

  • Tieman D, Zhu G, Resende MFJ, Lin T, Nguyen C, Bies D, Rambla JL, Beltran KS, Taylor M, Zhang B, Ikeda H, Liu Z, Fisher J, Zemach I, Monforte A, Zamir D, Granell A, Kirst M, Huang S, Klee H (2017) A chemical genetic roadmap to improved tomato flavor. Science 355:391–394

    CAS  PubMed  Google Scholar 

  • Uluisik S, Chapman NH, Smith R, Poole M, Adams G, Gillis RB, Besong TMD, Sheldon J, Stiegelmeyer S, Perez L, Samsulrizal N, Wang D, Fisk ID, Yang N, Baxter C, Rickett D, Fray R, Blanco UB, Powell ALT, Harding SE, Craigon J, Rose JKC, Fich EA, Sun L, Domozych DS, Fraser PD, Tucker GA, Grierson D, Seymour GB (2016) Corrigendum: Genetic improvement of tomato by targeted control of fruit softening. Nature Biotechnol 34:1072

    CAS  Google Scholar 

  • Vailleau F, Daniel X, Tronchet M, Montillet JL, Triantaphylides C, Roby D (2002) A R2R3-MYB gene, AtMYB30, acts as a positive regulator of the hypersensitive cell death program in plants in response to pathogen attack. Proc Natl Acad Sci USA 99:10179–10184

    CAS  PubMed  Google Scholar 

  • Verdier J, Zhao J, Torresjerez I, Ge S, Liu C, He X, Mysore KS, Dixon RA, Udvardi MK (2012) MtPAR MYB transcription factor acts as an on switch for proanthocyanidin biosynthesis in Medicago truncatula. Proc Natl Acad Sci USA 109:1766–1771

    CAS  PubMed  Google Scholar 

  • Vicente AR, Saladie M, Rose JKC, Labavitch JM (2007) The linkage between cell wall metabolism and fruit softening: looking to the future. J Sci Food Agr 87:1435–1448

    CAS  Google Scholar 

  • Wang RK, Cao ZH, Hao YJ (2014) Overexpression of a R2R3 MYB gene MdSIMYB1 increases tolerance to multiple stresses in transgenic tobacco and apples. Physiol Plantarum 150:76–87

    CAS  Google Scholar 

  • Wang XF, An JP, Liu X, Su L, You CX, Chu ZH, Hao YJ (2018) BTB-TAZ protein MdBT2 regulates anthocyanins biosynthesis through interacting with MdMYB1 transcription factor in response to nitrate in apple. Plant Physiol 178:890–900

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang YC, Liu WJ, Jiang HY, Mao ZL, Wang N, Jiang SH, Xu HF, Yang GX, Zhang ZY, Chen XS (2019a) The R2R3-MYB transcription factor MdMYB24-like is involved in methyl jasmonate-induced anthocyanin biosynthesis in apple. Plant Physiol Bioch 139:273–282

    CAS  Google Scholar 

  • Wang YC, Sun JJ, Wang N, Xu HF, Qu CZ, Jiang SH, Fang HC, Su MY, Zhang ZY, Chen XS (2019b) MdMYBL2 helps regulate cytokinin-induced anthocyanin biosynthesis in red-fleshed apple (Malus sieversii f. niedzwetzkyana) callus. Funct Plant Biol 46:187–196

    CAS  PubMed  Google Scholar 

  • Wang YC, Xu HF, Liu WJ, Wang N, Qu CZ, Jiang SH, Fang HC, Zhang ZY, Chen XS (2019c) Methyl jasmonate enhances apple’ cold tolerance through the JAZ–MYC2 pathway. Plant Cell Tiss Org 136:75–84

    Google Scholar 

  • Xu HF, Wang N, Liu JX, Qu CZ, Wang YC, Jiang SH, Lu NL, Wang DY, Zhang ZY, Chen XS (2017) The Molecular Mechanism Underlying Anthocyanin Metabolism in Apple Using the MdMYB16 and MdbHLH33 Genes. Plant Mol Biol 94:149–165

    CAS  PubMed  Google Scholar 

  • Xu R, Wang YH, Zheng H, Lu W, Wu CH, Huang JG, Yan K, Yang GD, Zheng CC (2015) Salt-induced transcription factor MYB74 is regulated by the RNA-directed DNA methylation pathway in Arabidopsis. J Exp Bot 66:5997–6008

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yan C, Fan M, Yang M, Zhao JP, Zhang WH, Su Y, Xiao LT, Deng HT, Xie DX (2018) Injury activates Ca2+ /calmodulin-dependent phosphorylation of JAV1-JAZ8-WRKY51 complex for jasmonate biosynthesis. Mol Cell 70:136–149

    CAS  PubMed  Google Scholar 

  • Yan Y, Stolz S, Chételat A, Reymond P, Pagni M, Dubugnon L, Farmer EE (2007) A downstream mediator in the growth repression limb of the jasmonate pathway. Plant Cell 19:2470–2483

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yang L, Huang W, Xiong F, Xian Z, Su D, Ren M, Li Z (2017) Silencing of SlPL, which encodes a pectate lyase in tomato, confers enhanced fruit firmness, prolonged shelf-life and reduced susceptibility to grey mould. Plant Biotechnol J 15:1544–1555

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhai Q, Yan L, Tan D, Chen R, Sun J, Gao L, Dong MQ, Wang Y, Li C (2013) Phosphorylation-coupled proteolysis of the transcription factor MYC2 is important for jasmonate-signaled plant immunity. PLoS Genet 9:e1003422

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang H, Zhang TT, Liu H, Shi DY, Wang M, Bie XM, Li XG, Zhang XS (2018a) Thioredoxin-mediated ROS homeostasis explains natural variation in plant regeneration. Plant Physiol 176:2231–2250

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang LC, Zhu MK, Ren LJ, Li AZ, Chen GP, Hu ZL (2018b) The SlFSR gene controls fruit shelf-life in tomato. J Exp Bot 69:2897–2909

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang TP, Liang JA, Wang MW, Li DX, Liu Y, Chen Tony HH, Yang XH (2019a) Genetic engineering of the biosynthesis of glycinebetaine enhances the fruit development and size of tomato. Plant Sci 280:355–366

    CAS  PubMed  Google Scholar 

  • Zhang X, Xu ZX, Chen LC, Ren ZH (2019b) Comprehensive analysis of multiprotein bridging factor 1 family genes and SlMBF1c negatively regulate the resistance to Botrytis cinerea in tomato. BMC plant Boil 19:437

    Google Scholar 

  • Zhang Z, Xu ZX, Wang LN, Li Q, Chen CH, Ren ZH (2019c) Effects of overexpression of SlMYB75 on tomato seedlings, fruits and seeds. J Shandong Agri Univ 50:937–943

    Google Scholar 

  • Zhang ZH, Cao BL, Gao S, Xu K (2019d) Grafting improves tomato drought tolerance through enhancing photosynthetic capacity and reducing ROS accumulation. Protoplasma 256:1013–1024

    CAS  PubMed  Google Scholar 

  • Zhou LJ, Li YY, Zhang RF, Zhang CL, Xie XB, Zhao C, Hao YJ (2017) The SUMO E3 ligase MdSIZ1 promotes anthocyanin accumulation by sumoylating MdMYB1 under low temperature conditions in apple. Plant Cell Environ 40:2068–2080

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by fundings from the National Natural Science Foundation of China (31872950 and 31672170), the Shandong “Double Tops” Program (SYL2017YSTD06) and the ‘Taishan Scholar’ Foundation of the People’s Government of Shandong Province (ts20130932).

Author information

Authors and Affiliations

Authors

Contributions

Z.R. and M.L. designed the experiments. M.L. and Z.Z. performed most of the experiments and analyzed the data. Z.X., C.C., and L.W. assisted in experiments and discussed the results. Z.R. and M.L. wrote the manuscript.

Corresponding author

Correspondence to Zhonghai Ren.

Ethics declarations

Conflict of interest

The authors declare competing financial interests: the authors (Zhonghai Ren and Mengyu Liu on behalf of Shandong Agricultural University) have filed a gene patent application based in part on this work with the China State Intellectual Property Office.

Additional information

Communicated by Neal Stewart.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, M., Zhang, Z., Xu, Z. et al. Overexpression of SlMYB75 enhances resistance to Botrytis cinerea and prolongs fruit storage life in tomato. Plant Cell Rep 40, 43–58 (2021). https://doi.org/10.1007/s00299-020-02609-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-020-02609-w

Keywords

Navigation