Skip to main content
Log in

Optimizing the Achievable Information Content Extraction from WorldView-4 Stereo Imagery

  • Original Article
  • Published:
PFG – Journal of Photogrammetry, Remote Sensing and Geoinformation Science Aims and scope Submit manuscript

Abstract

In 2016, DigitalGlobe’s third-generation commercial Earth observation satellite WorldView-4 (WV-4), which offered 31 cm spatial resolution for panchromatic imagery, was launched and was active up to January 2019. Together with WorldView-3, this is the highest ground resolution of civilian optical space-borne missions. In this study, the information content of WV-4′s pan-sharpened stereo imagery is comprehensively investigated by manual and automatic object extraction approaches in a study area with rolling urban topography. The potential of automatic extraction was maximised by a group of refinement methods supported by the normalised digital surface model (NDSM) generated from WV-4 stereo pair. The NDSM was used as an additional band in the segmentation for revealing the object height heterogeneity. The results demonstrated that our method increased the precision, completeness and overall quality of WV-4 automatic extraction up to 8.4% for the number of buildings and up to 3.4% for the road length.

Zusammenfassung

Optimierung des erreichbaren Informationsinhalts von WorldView-4 Stereomodellen. Im Jahr 2016 startete DigitalGlobe WorldView-4 (WV-4), einen kommerziellen Erdbeobachtungssatelliten der dritten Generation. Er lieferte eine Bodenauflösung von 31 cm und war bis Januar 2019 in Betrieb. Gemeinsam mit WorldView-3 hatte er die höchste Bodenauflösung eines nicht-militärischen optischen Fernerkundungssatelliten. In dieser Arbeit wird der Informationsgehalt der pan-geschärften Stereomodelle des WV-4 umfassend durch manuelle und automatische Datenerfassung in einem Gebiet untersucht, das durch Verstädterung und bewegte Topographie geprägt ist. Das Potenzial der automatischen Datenerfassung wurde durch eine Reihe von verfeinerten Methoden maximiert, unterstützt durch das aus dem WV-4 Stereomodell erzeugte normalisierte digitale Oberflächenmodell (NDSM). Der NDSM wurde als zusätzliche Ebene in der Segmentierung verwendet, um die Heterogenität der Objekthöhen zu ermitteln. Die Ergebnisse zeigten, dass unsere Methode die Genauigkeit, Vollständigkeit und Gesamtqualität der automatischen Datenerfassung bei WV-4-Szenen bis zu 8,4% bezüglich der Anzahl der Gebäude und bis zu 3,4% bezüglich der Straßenlänge gesteigert hat.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Aguilar MA, Novelli A, Nemamoui A, Aguilar FJ, Lorca AG, González-Yebra Ó (2018) Optimizing multiresolution segmentation for extracting plastic greenhouses from WorldView-3 imagery. In Smart Innovation, Systems and Technologies

    Google Scholar 

  • Alkan M, Solak Y (2010) An investigation of 1:5000 scale photogrammetric data for cadastral mapping uses: a case study of Kastamonu-Taskopru. Afr J Agric Res 5(18):2576–2588

    Google Scholar 

  • Alkan M, Büyüksalih G, Sefercik UG, Jacobsen K (2013) Geometric accuracy and information content of worldView-1 images. Opt Eng 52(2):026201

    Google Scholar 

  • Baatz M, Benz U, Dehghani S, Heynen M, Höltje A, Hofmann P, Lingenfelder I, Mimler M, Sohlbach M, Weber M, Willhauck G (2004) Ecognition professional: user guide. Munih Definiens Imaging 4:486

    Google Scholar 

  • Badea D, Jacobsen K (2004) Using break line information in filtering process of a digital surface model. ISPRS Congress İstanbul Turkey 35:267–272

    Google Scholar 

  • Baltsavias E, Gruen A, Eisenbeiss H, Zhang L, Waser T (2008) High-quality image matching and automated generation of 3D tree models. Internat J Remote Sensing 29(5):1243–1259

    Google Scholar 

  • Bhadauria A, Bhadauria H, Kumar A (2013) Building extraction from satellite images. IOSR J Comput Eng 12(2):76–81

    Google Scholar 

  • Blaschke T (2010) Object based image analysis for remote sensing. ISPRS J Photogram Remote Sensing 65(1):2–16

    Google Scholar 

  • Büyüksalih G, Jacobsen K (2007) Comparison of DEM Generation by Very High Resolution Optical Satellites. In: Bochenek Z (ed) New Developments and Challenges in Remote Sensing. Millpress, Rotterdam, pp 627–637

    Google Scholar 

  • Büyüksalih G, Oruc M, Jacobsen K (2004) Precise georeferencing of rectified high resolution space images. ISPRS Congress İstanbul Turkey 35:184–188

    Google Scholar 

  • Büyüksalih G, Baz I, Bayburt S, Jacobsen K, Alkan M (2009) Geometric and Mapping Potential of WorldView-1 Images, ISPRS Hannover Workshop 2009. Hannover, Germany

    Google Scholar 

  • Carleer AP, Wolff E (2006) Urban land covers multi-level region-based classification of VHR data by selecting relevant features. Int J Remote Sens 27(6):1035–1051

    Google Scholar 

  • Clode S, Kootsookos P, Rottensteiner F (2004) The automatic extraction of roads from LiDAR data. ISPRS Congress İstanbul 35:231–236

    Google Scholar 

  • Cramer M (2010) The DGPF-test on digital airborne camera evaluation–overview and test design. Photogramm Fernerkund Geoinform 2010(2):73–82

    Google Scholar 

  • Dragut L, Csillik O, Eisank C, Tiede D (2014) Automated parameterisation for multi-scale image segmentation on multiple layers. ISPRS J Photogram Remote Sensing 88(2014):119–127

    Google Scholar 

  • Fraser CS, Baltsavias E, Gruen A (2002) Processing of IKONOS imagery for sub meter 3D positioning and building extraction. ISPRS J Photogram Remote Sensing 56(2002):177–194

    Google Scholar 

  • Giada S, De Groeve T, Ehrlich D, Soille P (2003) Information extraction from very high resolution satellite images over Lukole refugee camp. Tanzania Internat J Remote Sensing 24(22):4251–4266

    Google Scholar 

  • Heenkenda MK, Joyce KE, Maier SW (2015) Mangrove tree crown delineation from highresolution imagery. Photogramm Eng Remote Sensing 81(6):471–479

    Google Scholar 

  • Heipke C (1997) Automation of interior, relative, and absolute orientation. ISPRS J Photogram Remote Sensing 52:1–19

    Google Scholar 

  • Hirschmüller H (2005) Accurate and Efficient Stereo Processing by Semi-Global Matching and Mutual Information. IEEE Conf CVPR, New York USA

    Google Scholar 

  • Hong G (2007) Image fusion, image registration, and radiometric normalization for high resolution image processing Thesis Fredericton. University of New Brunswick, Canada

    Google Scholar 

  • Jacobsen K (2011) Characteristics of very high resolution optical satellites for topographic mapping, ISPRS hannover workshop 2011. Internat Arch Photogram Remote Sensing XXXVIII-4/W19:6

    Google Scholar 

  • Jacobsen K (2012) Characteristics of Nearly World Wide Available Digital Height Models. Remote Sensing and GIS Applications in Forest Engineering, Curitiba, Brazil

    Google Scholar 

  • Kux HJH, Novack T, Ferreira R, Oliveira DA (2010) The International Archives of the Photogrammetry. Remote Sensing Spatial Inform Sci 38:140–170

    Google Scholar 

  • Laben CA, Brower BV (2000) Process for enhancing the spatial resolution of multispectral imagery using pan-sharpening. United States Patent Number: 6,011,875

  • Mancini A, Frontoni E, Zingaretti P (2009) A winner takes all mechanism for automatic object extraction from multi-source dataGeoinformatics. Internat Conf 12–14:1–6

    Google Scholar 

  • Nikolakopoulos KG (2008) Comparison of nine fusion techniques for very high resolution data. Photogramm Eng Remote Sensing 74(5):647–659

    Google Scholar 

  • Noguchi M, Fraser CS, Nakamura T, Shimono T, Oki S (2004) Accuracy assessment of QuickBird stereo imagery. Photogram Rec 19(106):128–137

    Google Scholar 

  • Passini R, Betzner D, Jacobsen K (2002) Filtering of Digital Elevation Models. ASPRS annual convention, Washington USA

    Google Scholar 

  • Pu R, Landry S (2012) A comparative analysis of high spatial resolution IKONOS and WorldView-2 imagery for mapping urban tree species. Remote Sens Environ 124:516–533

    Google Scholar 

  • Pu R, Landry S, Yu Q (2011) Object-based urban detailed land cover classification with high spatial resolution IKONOS imagery. Int J Remote Sens 32(12):3285–3308

    Google Scholar 

  • Rahmani S, Strait M, Merkurjev D, Moeller M, Wittman T (2010) An adaptive IHS pan-sharpening method. IEEE Geosci Remote Sensing Lett 7(4):746–750

    Google Scholar 

  • Rani K, Sharma R (2013) Study of different image fusion algorithm. Internat J Emerging Technol Adv Eng 3(5):288–291

    Google Scholar 

  • Sefercik UG, Alkan M (2009) Advanced analysis of differences between C and X bands Using SRTM data for mountainous topography. J Indian Soc Remote Sensing 37(3):335–349

    Google Scholar 

  • Sefercik UG, Alkan M, Büyüksalih G, Jacobsen K (2013) Generation and validation of high-resolution DEMs from WorldView-2 stereo data. Photogram Rec 28(144):362–374

    Google Scholar 

  • Sefercik UG, Karakis S, Bayik C, Alkan M, Yastikli N (2014) Contribution of normalized DSM to automatic building extraction from HR mono optical satellite imagery. Euro J Remote Sensing 47:575–591

    Google Scholar 

  • Sefercik UG, Karakis S, Atalay C, Yigit I, Gokmen U (2018) Novel fusion approach on automatic object extraction from spatial data: case study WorldView-2 and TOPO5000. Geocarto Internat 33(10):1139–1154

    Google Scholar 

  • Sportouche H, Tupin F, Denise L (2009) Building extraction and 3D reconstruction in urban areas from high resolution optical and SAR imagery. Urban Remote Sensing Event, 20–22 May. Shanghai, Institute of Electrical and Electronics Engineers (IEEE), pp 1–11

    Google Scholar 

  • Sun W, Chen B, Messinger D (2014) Nearest-neighbor diffusion-based pan-sharpening algorithm for spectral images. Optical Eng 53(1):013107

    Google Scholar 

  • Tian J, Chen DM (2007) Optimization in multi-scale segmentation of high-resolution satellite images for artificial feature recognition. Int J Remote Sens 28(20):4625

    Google Scholar 

  • Toutin T (2004) Geometric processing of remote sensing images: models, algorithms and methods. Internat J Remote Sensing 25:1893–1924

    Google Scholar 

  • UTSA (2013). Object-oriented classification, Lecture 11. [online] (updated May 2016) https://www.utsa.edu/lrsg/Teaching/EES5083/L11.ppt (Accessed Nov 2018)

  • Vijayaraj V, Younan NH, O’Hara CG (2004) Quality metrics for multispectral image processing. In: Proceedings of the American Society of Photogrammetry and Remote Sensing, Denver, CDRom, pp 242–252

  • Zhang Y, Mishra RK (2014) From UNB PanSharp to Fuze Go – the success behind the pan-sharpening algorithm. Internat J Image Data Fusion 5(1):39–53

    Google Scholar 

Download references

Acknowledgements

We would like to thank Yıldız Technical University for supporting the acquisition of WV-4 stereo imagery in the scope of Scientific Research Project with ID: 3075. Finally, many thanks to Zonguldak Bulent Ecevit University for supporting the used software.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Umut G. Sefercik.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sefercik, U.G., Alkan, M., Atalay, C. et al. Optimizing the Achievable Information Content Extraction from WorldView-4 Stereo Imagery. PFG 88, 449–461 (2020). https://doi.org/10.1007/s41064-020-00127-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41064-020-00127-8

Keywords

Navigation