Skip to main content

Advertisement

Log in

Electrochemical immunosensor based on binary nanoparticles decorated rGO-TEPA as magnetic capture and Au@PtNPs as probe for CEA detection

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Using gold and magnetic nanoparticles co-decorated reduced graphene oxide-tetraethylenepentamine (rGO-TEPA/Au-MNPs) as the magnetic platform for capturing the primary antibody (Ab1), separation and preconcentration of immunocomplex, a novel homogeneous electrochemical immunosensor was successfully developed. The newly prepared magnetic rGO-TEPA/Au-MNPs, compared with MNPs, exhibited better stability and enhanced electrical conductivity attributed to rGO-TEPA, and showed higher biorecognition efficiency due to AuNPs. In addition, Au@PtNPs were prepared and modified with secondary antibody (Ab2) as an efficient signal probe for signal readout. Using carcinoembryonic antigen (CEA) as a model analyte, the prepared immunosensor demonstrated satisfactory properties like high stability, good repeatability and selectivity, wide linear range (5.0 pg mL−1~200.0 ng mL−1) as well as low detection limit (1.42 pg mL−1). The homogenous electrochemical immunosensor was applied to the detection of CEA in human serum and was found to exhibit good correlation with the reference method. Thus, the proposed rGO-TEPA/Au-MNPs-based homogenous immunoassay platform might open up a new way for biomarker diagnosis.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Li L, Zhang L, Yu J, Ge S, Song X (2015) All-graphene composite materials for signal amplification toward ultrasensitive electrochemical immunosensing of tumor marker. Biosens Bioelectron 71:108–114

    Article  CAS  Google Scholar 

  2. Zhang H, Fan M, Jiang J, Shen Q, Cai C, Shen J (2019) Sensitive electrochemical biosensor for MicroRNAs based on duplex-specific nuclease-assisted target recycling followed with gold nanoparticles and enzymatic signal amplification. Anal Chim Acta 1064:33–39

    Article  CAS  Google Scholar 

  3. Liu J, Lin G, Xiao C, Xue Y, Yang A, Ren H, Lu W, Zhao H, Li X, Yuan Z (2015) Sensitive electrochemical immunosensor for alpha-fetoprotein based on graphene/SnO2/Au nanocomposite. Biosens Bioelectron 71:82–87

    Article  CAS  Google Scholar 

  4. Chikkaveeraiah BV, Bhirde AA, Morgan NY, Eden HS, Chen X (2012) Electrochemical immunosensors for detection of cancer protein biomarkers. ACS Nano 6:6546–6561

    Article  CAS  Google Scholar 

  5. Villalonga ML, Borisova B, Arenas CB, Villalonga A, Arévalo-Villena M, Sánchez A, Pingarrón JM, Briones-Pérez A, Villalonga R (2019) Disposable electrochemical biosensors for Brettanomyces bruxellensis and total yeast content in wine based on core-shell magnetic nanoparticles. Sensors Actuators B Chem 279:15–21

    Article  CAS  Google Scholar 

  6. Gupta PK, Chauhan D, Khan ZH, Solanki PR (2020) ZrO2 nanoflowers decorated with graphene quantum dots for electrochemical immunosensing. ACS Appl Nano Mater 3:2506–2516

    Article  CAS  Google Scholar 

  7. Ma E, Wang P, Yang Q, Yu H, Pei F, Li Y, Liu Q, Dong Y (2019) Electrochemical immunosensor based on MoS2 NFs/Au@AgPt YNCs as signal amplification label for sensitive detection of CEA. Biosens Bioelectron 142:111580–111587

    Article  CAS  Google Scholar 

  8. Su S, Sun Q, Wan L, Gu X, Zhu D, Zhou Y, Chao J, Wang L (2019) Ultrasensitive analysis of carcinoembryonic antigen based on MoS2-based electrochemical immunosensor with triple signal amplification. Biosens Bioelectron 140:111353–111358

    Article  CAS  Google Scholar 

  9. Gao H, Wen L, Tian J, Wu Y, Liu F, Lin Y, Hua W, Wu G (2019) A portable electrochemical immunosensor for highly sensitive point-of-care testing of genetically modified crops. Biosens Bioelectron 142:111504–111510

    Article  CAS  Google Scholar 

  10. Ning S, Zhou M, Liu C, Waterhouse GIN, Dong J, Ai S (2019) Ultrasensitive electrochemical immunosensor for avian leukosis virus detection based on a beta-cyclodextrin-nanogold-ferrocene host-guest label for signal amplification. Anal Chim Acta 1062:87–93

    Article  CAS  Google Scholar 

  11. Zhang XA, Teng Y, Fu Y, Xu L, Zhang S, He B, Wang C, Zhang W (2010) Lectin-based biosensor strategy for electrochemical assay of glycan expression on living cancer cells. Anal Chem 82:9455–9460

    Article  CAS  Google Scholar 

  12. Lee J, Takemura K, Kato CN, Suzuki T, Park EY (2017) Binary nanoparticle graphene hybrid structure-based highly sensitive biosensing platform for norovirus-like particle detection. ACS Appl Mater Interfaces 9:27298–27304

    Article  CAS  Google Scholar 

  13. Lee CY, Wu LP, Chou TT, Hsieh YZ (2018) Functional magnetic nanoparticles–assisted electrochemical biosensor for eosinophil cationic protein in cell culture. Sensors Actuators B Chem 257:672–677

    Article  CAS  Google Scholar 

  14. Fan L, Yan Y, Guo B, Zhao M, Li J, Bian X, Wu H, Cheng W, Ding S (2019) Trimetallic hybrid nanodendrites and magnetic nanocomposites-based electrochemical immunosensor for ultrasensitive detection of serum human epididymis protein 4. Sensors Actuators B Chem 296:126697–126703

    Article  CAS  Google Scholar 

  15. Rocha-Santos TAP (2014) Sensors and biosensors based on magnetic nanoparticles. Trends Anal Chem 62:28–36

    Article  CAS  Google Scholar 

  16. Xie LL, Yang X, He Y, Yuan R, Chai YQ (2018) Polyacrylamide gel-contained zinc finger peptide as the “lock” and zinc ions as the “key” for construction of ultrasensitive prostate-specific antigen SERS immunosensor. ACS Appl Mater Interfaces 10:15200–15206

    Article  CAS  Google Scholar 

  17. He Y, Wang Y, Yang X, Xie S, Yuan R, Chai Y (2016) Metal organic frameworks combining CoFe2O4 magnetic nanoparticles as highly efficient SERS sensing platform for ultrasensitive detection of N-terminal pro-brain natriuretic peptide. ACS Appl Mater Interfaces 8:7683–7690

    Article  CAS  Google Scholar 

  18. Zang Y, Lei JP, Hao Q, Ju HX (2014) “Signal-on” photoelectrochemical sensing strategy based on target-dependent aptamer conformational conversion for selective detection of lead(II) ion. ACS Appl Mater Interfaces 6:15991–15997

    Article  CAS  Google Scholar 

  19. Ma H, Zhang X, Li X, Li R, Du B, Wei Q (2015) Electrochemical immunosensor for detecting typical bladder cancer biomarker based on reduced graphene oxide-tetraethylene pentamine and trimetallic AuPdPt nanoparticles. Talanta 143:77–82

    Article  CAS  Google Scholar 

  20. Chen Q, Yu C, Gao R, Gao L, Li Q, Yuan G, He J (2016) A novel electrochemical immunosensor based on the rGO-TEPA-PTC-NH2 and AuPt modified C60 bimetallic nanoclusters for the detection of Vangl1, a potential biomarker for dysontogenesis. Biosens Bioelectron 79:364–370

    Article  CAS  Google Scholar 

  21. Cao L, Fang C, Zeng R, Zhao X, Zhao F, Jiang Y, Chen Z (2017) A disposable paper-based microfluidic immunosensor based on reduced graphene oxide-tetraethylene pentamine/Au nanocomposite decorated carbon screen-printed electrodes. Sensors Actuators B Chem 252:44–54

    Article  CAS  Google Scholar 

  22. De Oliveira RAG, Materon EM, Melendez ME, Carvalho AL, Faria RC (2017) Disposable microfluidic immunoarray device for sensitive breast cancer biomarker detection. ACS Appl Mater Interfaces 9:27433–27440

    Article  Google Scholar 

  23. Wu Z, Fu Q, Yu S, Sheng L, Xu M, Yao C, Xiao W, Li X, Tang Y (2016) Pt@AuNPs integrated quantitative capillary-based biosensors for point-of-care testing application. Biosens Bioelectron 85:657–663

    Article  CAS  Google Scholar 

  24. Zhang X, Li Y, Lv H, Feng J, Gao Z, Wang P, Dong Y, Liu Q, Zhao Z (2018) Sandwich-type electrochemical immunosensor based on Au@Ag supported on functionalized phenolic resin microporous carbon spheres for ultrasensitive analysis of alpha-fetoprotein. Biosens Bioelectron 106:142–148

    Article  CAS  Google Scholar 

  25. Zheng XX, Li L, Cui K, Zhang Y, Zhang L, Ge SG, Yu JH (2018) Ultrasensitive enzyme-free biosensor by coupling cyclodextrin functionalized Au nanoparticles and high-performance au-paper electrode. ACS Appl Mater Interfaces 10:3333–3340

    Article  CAS  Google Scholar 

  26. Fu Q, Wu Z, Du D, Zhu C, Lin Y, Tang Y (2017) Versatile barometer biosensor based on Au@Pt core/shell nanoparticle probe. ACS Sens 2:789–795

    Article  CAS  Google Scholar 

  27. Ma X, Wang Z, He S, Chen C, Luo F, Guo L, Qiu B, Lin Z, Chen G, Hong G (2019) Development of an immunosensor based on the exothermic reaction between H2O and CaO using a common thermometer as readout. ACS Sens 4:2375–2380

    Article  CAS  Google Scholar 

  28. Cao X, Wang N, Jia S, Guo L, Li K (2013) Bimetallic AuPt nanochains: synthesis and their application in electrochemical immunosensor for the detection of carcinoembryonic antigen. Biosens Bioelectron 39:226–230

    Article  CAS  Google Scholar 

  29. Pang PF, Teng X, Chen M, Zhang YL, Wang HB, Yang C, Yang WR, Barrow CJ (2018) Ultrasensitive enzyme-free electrochemical immunosensor for microcystin-LR using molybdenum disulfide/gold nanoclusters nanocomposites as platform and Au@Pt core-shell nanoparticles as signal enhancer. Sensors Actuators B Chem 266:400–407

    Article  CAS  Google Scholar 

  30. Zhang T, Xing Y, Song Y, Gu Y, Yan X, Lu N, Liu H, Xu Z, Xu H, Zhang Z, Yang M (2019) AuPt/MOF-graphene: a synergistic catalyst with surprisingly high peroxidase-like activity and its application for H2O2 detection. Anal Chem 91:10589–10595

    Article  CAS  Google Scholar 

  31. Zhang S, Zhang C, Jia Y, Zhang X, Dong Y, Li X, Liu Q, Li Y, Zhao Z (2019) Sandwich-type electrochemical immunosensor based on Au@Pt DNRs/NH2-MoSe2 NSs nanocomposite as signal amplifiers for the sensitive detection of alpha-fetoprotein. Bioelectrochemistry 128:140–147

    Article  CAS  Google Scholar 

  32. Chen P, Hua X, Liu J, Liu H, Xia F, Tian D, Zhou C (2019) A dual amplification electrochemical immunosensor based on HRP-Au@Ag NPs for carcinoembryonic antigen detection. Anal Biochem 574:23–30

    Article  CAS  Google Scholar 

  33. Li L, Wang T, Zhang Y, Xu C, Zhang L, Cheng X, Liu H, Chen X, Yu J (2018) Editable TiO2 nanomaterial-modified paper in situ for highly efficient detection of carcinoembryonic antigen by photoelectrochemical method. ACS Appl Mater Interfaces 10:14594–14601

    Article  CAS  Google Scholar 

  34. Li X, Liu L, Xu Z, Wang W, Shi J, Liu L, Jing M, Li F, Zhang X (2019) Gamma irradiation and microemulsion assisted synthesis of monodisperse flower-like platinum-gold nanoparticles/reduced graphene oxide nanocomposites for ultrasensitive detection of carcinoembryonic antigen. Sensors Actuators B Chem 287:267–277

    Article  CAS  Google Scholar 

  35. Feng TT, Qiao XW, Wang HN, Sun Z, Hong CL (2016) A sandwich-type electrochemical immunosensor for carcinoembryonic antigen based on signal amplification strategy of optimized ferrocene functionalized Fe3O4@SiO2 as labels. Biosens Bioelectron 79:48–54

    Article  CAS  Google Scholar 

  36. Wang Y, Xu H, Luo J, Liu J, Wang L, Fan Y, Yan S, Yang Y, Cai X (2016) A novel label-free microfluidic paper-based immunosensor for highly sensitive electrochemical detection of carcinoembryonic antigen. Biosens Bioelectron 83:319–326

    Article  CAS  Google Scholar 

  37. Li JF, Yang ZL, Ren B, Liu GK, Fang PP, Jiang YX, Wu DY, Tian ZQ (2006) Surface-enhanced Raman spectroscopy using gold-core platinum-shell nanoparticle film electrodes: toward a versatile vibrational strategy for electrochemical interfaces. Langmuir 22:10372–10379

    Article  CAS  Google Scholar 

  38. Lee J, Morita M, Takemura K, Park EY (2018) A multi-functional gold/iron-oxide nanoparticle-CNT hybrid nanomaterial as virus DNA sensing platform. Biosens Bioelectron 102:425–431

    Article  CAS  Google Scholar 

Download references

Funding

This research was supported in part by grants from the National Natural Science Foundation of China (61627807 and 81873913), Guangxi Key Research and Development Program (Guike AB20072003), and Natural Science Foundation of Guangxi (2018GXNSFDA281044), and also by China Postdoctoral Science Foundation (2019M653315), Guangxi Key Laboratory of Automatic Detecting Technology and Instruments (YQ20108) as well as Middle-aged and Young Teachers’ Basic Ability Promotion Project of Guangxi (2019KY0207).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhencheng Chen.

Ethics declarations

Yes, all procedures performed in studies involving human participants were in accordance with the ethical standards.

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 169 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, L., Xiao, H., Fang, C. et al. Electrochemical immunosensor based on binary nanoparticles decorated rGO-TEPA as magnetic capture and Au@PtNPs as probe for CEA detection. Microchim Acta 187, 584 (2020). https://doi.org/10.1007/s00604-020-04559-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-020-04559-2

Keywords

Navigation