Skip to main content
Log in

Self-collimation of Ultrasonic Waves in a Two-dimensional Prism-shaped Phononic Crystal

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

The self-collimation of ultrasonic waves in a two-dimensional prism-shaped phononic crystal (PC) with a square lattice immersed in water was theoretically and experimentally investigated. The acoustic pressure fields at the frequencies of the first and the second pass bands were calculated with and without the PC in the acoustic path by using the finite element method. The normalized pressure distributions of the ultrasonic waves transmitted through water only and through the PC were theoretically and experimentally obtained along the direction perpendicular to the beam axis. We demonstrated self-collimation and directivity enhancement of the ultrasonic waves in the two-dimensional prism-shaped PC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. R. S. Kshetrimayum, IEEE Potentials 23, 44 (2004).

    Article  Google Scholar 

  2. K. M. Leung and Y. F. Liu, Phys. Rev. Lett. 65, 2646 (1990).

    Article  ADS  Google Scholar 

  3. E. Yablonovitch, T. J. Gmitter and K. M. Leung, Phys. Rev. Lett. 67, 2295 (1991).

    Article  ADS  Google Scholar 

  4. T. F. Krauss, M. Richard and S. Brand, Nature 383, 699 (1996).

    Article  ADS  Google Scholar 

  5. M. Notomi, Phys. Rev. B 62, 10696 (2000).

    Article  ADS  Google Scholar 

  6. S. Fan, P. R. Villeneuve, J. D. Joannopoulos and H. A. Haus, Phys. Rev. Lett. 80, 960 (1998).

    Article  ADS  Google Scholar 

  7. M. S. Kushwaha et al., Phys. Rev. B 49, 2313 (1994).

    Article  ADS  Google Scholar 

  8. M. Torres, F. R. Montero de Espinosa, D. Garcia-Pablos and N. Garcia, Phys. Rev. Lett. 82, 3054 (1999).

    Article  ADS  Google Scholar 

  9. R. P. Moiseyenko, S. Herbison, N. F. Declercq and V. Laude, J. Appl. Phys. 111, 034907 (2012).

    Article  ADS  Google Scholar 

  10. V. Laude, M. Wilm, S. Benchabane and A. Khelif, Phys. Rev. E 71, 036607 (2005).

    Article  ADS  Google Scholar 

  11. F. R. Montero de Espinoza, E. Jimenez and M. Torres, Phys. Rev. Lett. 80, 1208 (1998).

    Article  ADS  Google Scholar 

  12. T. Miyashita, W. Sato, Y. Nakaso and R. Mukuda, Jpn. J. Appl. Phys. 46, 4684 (2007).

    Article  ADS  Google Scholar 

  13. S. Mizuno, Jpn. J. Appl. Phys. 55, 017302 (2016).

    Article  ADS  Google Scholar 

  14. H. S. Kang, K. I. Lee and S. W. Yoon, Jpn. J. Appl. Phys. 56, 066701 (2017).

    Article  ADS  Google Scholar 

  15. M. Ke et al., Solid State Commun. 142, 177 (2007).

    Article  ADS  Google Scholar 

  16. Y. Kasai et al., Jpn. J. Appl. Phys. 50, 067301 (2011).

    Article  ADS  Google Scholar 

  17. T. Tsuchiya et al., Jpn. J. Appl. Phys. 51, 07GG11 (2012).

    Article  Google Scholar 

  18. Y. M. Kim, K. I. Lee, H. S. Kang and S. W. Yoon, New Phys.: Sae Mulli 66, 930 (2016).

    Google Scholar 

  19. J. H. Oh, H. M. Seung and Y. Y. Kim, Appl. Phys. Lett. 104, 073503 (2014).

    Article  ADS  Google Scholar 

  20. I. Perez-Arjona et al., Phys. Rev. B 75, 014304 (2007).

    Article  ADS  Google Scholar 

  21. A. Sukhovich, L. Jing and J. H. Page, Phys. Rev. B 77, 014301 (2008).

    Article  ADS  Google Scholar 

  22. Z. He et al., J. Appl. Phys. 105, 116105 (2009).

    Article  ADS  Google Scholar 

  23. H. S. Kang and K. I. Lee, New Phys.: Sae Mulli 69, 673 (2019).

    Google Scholar 

  24. E. Soliveres et al., Appl. Phys. Lett. 94, 164101 (2009).

    Article  ADS  Google Scholar 

  25. D. P. Elford, L. Chalmers, F. V. Kusmartsev and G. M. Swallowe, J. Acoust. Soc. Am. 130, 2746 (2011).

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. 2019R1F1A1040854).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kang Il Lee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kang, H.S., Lee, K.I. Self-collimation of Ultrasonic Waves in a Two-dimensional Prism-shaped Phononic Crystal. J. Korean Phys. Soc. 77, 510–514 (2020). https://doi.org/10.3938/jkps.77.510

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.77.510

Keywords

Navigation