Skip to main content
Log in

Study of thermomechanical properties of glycidoxypropyl trimethoxy silane functionalized nanosilica/amine terminated poly (butadiene-co-acrylonitrile) rubber modified novolac epoxy composites for high performance applications

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Present study investigates the effect of functionalized fumed silica (f-silica) on the thermal; mechanical and thermomechanical properties of amine terminated polybutadiene-co-acrylonitrile rubber (ATBN) modified novolac epoxy resin. All the nanocomposites showed higher thermal stability as compared to the neat novolac epoxy. Maximum –55 ˚C increment in the peak degradation temperature was achieved in the nanocomposite containing 0.1 wt. % f-silica and 10 wt. % ATBN. Glass transition temperature of the nanocomposites was reduced as compared to neat novolac epoxy resin due to incorporation of ATBN. Thermomechanical analysis showed that crosslinking density of the ATBN/novolac epoxy composite was increased as compared to neat novolac epoxy, which was further reduced in the nanocomposites due to hardener capping effect of the f-silica. All the nanocomposites showed higher elongation at break as compared to neat novolac epoxy resin. Maximum –87 and 60% increment in tensile and flexural strengths were achieved in the nanocomposite containing 2 wt % f-silica and 10 wt. % ATBN. Impact strength of the nanocomposites was increased with increasing f-silica content. Preferential conglomeration of the f-silica nanoparticles was observed in the rubber phase which acted as the efficient energy absorption point during the impact testing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Esmaeili A, Sbarufatti C, Jiménez-Suárez A, Ureña A, Hamouda AMS (2020) A comparative study of the incorporation effect of SWCNT-OH and DWCNT with varied microstructural defects on tensile and impact strengths of epoxy based nanocomposite. Journal of Polymer Research 27(152):1–10

    Google Scholar 

  2. Hernández-Guerrero O, Campillo-Illanes BF, Domínguez-Patiño ML, Benavente R, Martínez H, Sedano A, Villanueva H (2020) Comparative studies of the mechanical and thermal properties of clay / copolymer nanocomposites synthesized by two in-situ methods and solution blending method. Journal of Polymer Research 27(106):1–7

    Google Scholar 

  3. Hou L, Gao J, Ruan H, Xu Xu, Lu S (2020) Mechanical and thermal properties of hyperbranched poly (ε-caprolactone) modified graphene/epoxy composites. Journal of Polymer Research 27(32):148

    CAS  Google Scholar 

  4. Nazari D, Bahri-Laleh N, Hanifpour A, Nekoomanesh-Haghighi M, Mehrdad Jalilian S, Alihosseini A, Mirmohammadi SA (2020) Curing, mechanical, thermomechanical and rheological properties of new poly(1-hexene-co-hexadiene) rubber. Journal of Polymer Research 27(126):1–9

    Google Scholar 

  5. Wang Z, Li S, Wang J, Han E, Tian G, Wu D (2020) Dielectric and mechanical properties of polyimide fiber reinforced cyanate ester resin composites with varying resin contents. Journal of Polymer Research 27(160):1–5

    Google Scholar 

  6. Mazhar S, Lawson BP, Stein BD, Pink M, Carini J, Polezhaev A, Vlasov E, Zulfiqar S, Sarwar MI, Bronstein LM (2020) Elastomer based nanocomposites with reduced graphene oxide nanofillers allow for enhanced tensile and electrical properties. Journal of Polymer Research 27(105):1–10

    Google Scholar 

  7. Moni G, Jose T, Rajeevan S, Mayeen A, Rejimon Sarath APS, George SC (2020) Influence of exfoliated graphite inclusion on the thermal, mechanical, dielectric and solvent transport characteristics of fluoroelastomer nanocomposites. Journal of Polymer Research 27(72):1–11

    Google Scholar 

  8. Saleem A, Luisa Medina L, Skrifvars M (2020) Mechanical performance of hybrid bast and basalt fibers reinforced polymer composites. Journal of Polymer Research 27(61):1–13

    Google Scholar 

  9. Sethy S, Satapathy BK (2020) Microstructural interpretations on thermo-mechanical relaxation and electrical conductivity of polyamide-12/polypropylene-MWCNT nanocomposites. Journal of Polymer Research 27(84):1–12

    Google Scholar 

  10. Wang S, Yongqiang Liu Y, Chen K, Xue P, Xudong Lin X, Jia M (2020) Thermal and mechanical properties of the continuous glass fibers reinforced PVC composites prepared by the wet powder impregnation technology. Journal of Polymer Research 27(82):1–12

    Google Scholar 

  11. Chikhi N, Fellahi S, Bakar M (2002) Modification of epoxy resin using reactive liquid ( ATBN) rubber. European Polymer Journal 38(2):251–264

    CAS  Google Scholar 

  12. Pearson RA, Yee AF (1986) Toughening mechanism in elastomer modified epoxies. J Mater Sci 21(7):2475–2488

    CAS  Google Scholar 

  13. Jin S, Feng X, Pang J, Hua X (1996) Toughening of epoxy resin with microspheres. J Mater Sci Technol 12:46–50

    Google Scholar 

  14. Tsai JL, Huang BH, Cheng YL (2009) Enhancing fracture toughness of glass/epoxy composites by using rubber particles together with silica nanoparticles. Journal of Composite Materials. 43(25):3107–3123

    Google Scholar 

  15. Shukla P, Srivastava D (2012) Mechanical and morphological study of the modification of phenol-cardanol-based epoxidized novolac resin. Journal of Chem Tech Research 4:1522–1526

    CAS  Google Scholar 

  16. Tripathi G, Srivastava D (2009) Studies on blends of cycloaliphatic epoxy resin with varying concentrations of carboxyl terminated butadiene acrylonitrile copolymer I: Thermal and morphological properties. Bull Mater Sci. 32(2):199–204

    CAS  Google Scholar 

  17. Aiteng S, Yunzhao Y (1990) CTBN toughened epoxy resins – Effect of curing mechanism on network structure of the rubber phase. Chin J Polym Sci 8:183–187

    Google Scholar 

  18. Cardwell BJ, Yee AF (1993) Rate and temperature effects on the fracture toughness of a rubber-modified epoxy. Polymer. 34(8):1695–1701

    CAS  Google Scholar 

  19. Tan SK, Ahmad S, Chia CH, Mamun A, Heim HPA (2013) Comparison study of liquid natural rubber (LNR) and liquid epoxidized natural rubber (LENR) as the toughening agent for epoxy. American Journal of Material Science 3(3):55–61

    Google Scholar 

  20. Kang I, Khaleque MdA, Yoo Y, Yoon PJ, Kim SY, Lim KT (2011) Preparation and properties of ethylene propylene diene rubber/multi walled carbon nanotube composites for strain sensitive materials. Composites Part A: Applied Science and Manufacturing. 42(6):623–630

    Google Scholar 

  21. Quan D, Ivankovic A (2015) Effect of core-shell rubber (CSR) nano-particles on mechanical properties and fracture toughness of an epoxy polymer. Polymer 66:16–28

    CAS  Google Scholar 

  22. Kavita, Mordina B, Tiwari R K. (2016) Thermal and mechanical behavior of poly (vinyl butyral)-modified novolac epoxy/multiwalled carbon nanotube nanocomposites. Journal of Applied Polymer Science 43333: 1–11.

    Google Scholar 

  23. Lu S, Ban J, Yu C, Deng W (2010) Properties of epoxy resins modified with liquid crystalline polyurethane. Iran Polym J 19:669–678

    CAS  Google Scholar 

  24. Mirmohseni A, Zavareh S (2010) Preparation and characterization of an epoxy nanocomposite toughened by a combination of thermoplastic, layered and particulate nano-fillers. Mater Des 31:2699–2706

    CAS  Google Scholar 

  25. Yang B, Wang W, Huang J (2015) Synergic effects of poly (vinyl butyral) on toughening epoxies by nanostructured rubbers. Polymer 77:129–142

    CAS  Google Scholar 

  26. Dadfar MR, Ghadami F (2013) Effect of rubber modification on fracture toughness properties of glass reinforced hot cured epoxy composites. Mater Des 47:16–20

    CAS  Google Scholar 

  27. Yi Liu, Via BK, Pan Y, Cheng Q, Guo H, Maria L, Auad ML, Taylor S (2017) Preparation and Characterization of Epoxy Resin Cross-Linked with High Wood Pyrolysis Bio-Oil Substitution by Acetone Pretreatment (2017). Polymers 9(106):1–14

    CAS  Google Scholar 

  28. Gupta A, Singhal R, Nagpal AK (2003) Crosslinking Reaction of Epoxy Resin (Diglycidyl Ether of Bisphenol A) by Anionically Polymerized Polycaprolactam I Mechanism and Optimization. Journal of Applied Polymer Science. 89(12):3237–3247

    Google Scholar 

  29. Tasai JL, Huang BH, Cheng YL (2011) Enhancing fracture toughness of glass/epoxy composites for wind blades using silica nanoparticles and rubber particles. Procedia Engineering 14:1982–1987

    Google Scholar 

  30. Jogi FB, Kulkarni M, Brahmankar PK, Ratna D (2014) Some studies on mechanical properties of epoxy/CTBN/clay based nanocompoites (PNC). Procedia Materials Science 5:787–794

    CAS  Google Scholar 

  31. Mahesh VM, Murlidhara BK, George R (2014) Influence of different nanomaterial on the mechanical properties of epoxy matrix composites - A comparative study. International Journal of Innovative Research in Science, Engineering and Technology 3(7):14420–14427

    Google Scholar 

  32. Ahmed MA, Kandil UF, Shaker NO, Hashem AI (2015) The overall effect of reactive rubber nanoparticles and nano clay on the mechanical properties of epoxy resin. Journal of Radiation Research and Applied Sciences 8(4):549–561

    Google Scholar 

  33. Han JT, Cho K (2006) Nanoparticle-induced enhancement in fracture toughness of highly loaded epoxy composites over a wide temperature range. J Mater Sci. 41(13):4239–4245

    CAS  Google Scholar 

  34. Chonkaew W, Sombatsompop N, Brostow W (2013) High impact strength and low wear of epoxy modified by a combination of liquid carboxyl terminated poly (butadiene-co-acrylonitrile) rubber and organoclay. European Polymer Journal 49(6):1461–1470

    CAS  Google Scholar 

  35. Salinas- Ruiz MDM, Skordos AA, Partridge IK (2010) Rubber toughened epoxy loaded with carbon nanotubes: structure – property relationships. Journal of Material Science 45:2633–2639

    Google Scholar 

  36. Vijayan PP, Pionteck J, Huczko A, Puglia D, Kenny JM, Thomas S (2014) Liquid rubber and silicon carbide nanofiber modified epoxy nanocomposites: Volume shrinkage, cure kinetics and properties. Compos Sci Technol 102:65–73

    CAS  Google Scholar 

  37. Nagapadma M (2013) Effect of ATBN, carbon fibers on DGEBA – DDS epoxy system for composite applications. J E S T. 2(2):1–4

    Google Scholar 

  38. Jeyranpour F, Alahyarizadeh GH, Minuchehr A (2016) The thermo-mechanical properties estimation of fullerene-reinforced resin epoxy composites by molecular dynamics simulation – A comparative study. Polymer. 88:9–18

    CAS  Google Scholar 

  39. Wang F, Drzal LT, Qin Y, Huang Z (2016) The thermo-mechanical properties estimation of fullerene-reinforced resin epoxy composites by molecular dynamics simulation – A comparative study. Composites Part A. 87:10–22

    CAS  Google Scholar 

  40. Kumar MA, Reddy GR, Chakradhar KVP (2011) Hydrophillic fumed silica/clay nanocomposites: Effect of silica/clay on performance. International Journal of Nanomaterials and Biostructures 1:1–11

    Google Scholar 

  41. Tasis D, Nikos T, Alberto B, Prato M (2006) Chemistry of Carbon Nanotubes. Chem Rev. 106(3):1105–1136

    CAS  PubMed  Google Scholar 

  42. Bagwe RP, Hilliard LR, Tan W (2006) Surface modification of silica nanoparticles to reduce aggregation and nonspecific binding. Langmuir 22(9):4357–4362

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Takahashi S, Paul DR (2006) Gas permeation in poly (ether imide) nanocomposite membranes based on surface-treated silica Part 2: With chemical coupling to matrix. Polymer 47(21):7535–7547

    CAS  Google Scholar 

  44. Kango S, Kalia S, Celli A, Njuguna J, Habibi Y, Kumar R (2013) Surface modification of inorganic nanoparticles for development of organic–inorganic nanocomposites—A review. Prog Polym Sci 38:1232–1261

    CAS  Google Scholar 

  45. Kavita, Pal V, Tiwari R K. (2018). Impact behavior of f-silica and amine terminated polybutadiene co-acrylonitrile rubber modified novolac epoxy/Kevlar nanocomposites. AIP Conference Proceedings 1953, (090064) 1- 4.

  46. Saavedra JT, Beceiro JL, Naya S, Gracia C, Artiaga R (2010) Controversial effects of fumed silica on the curing and thermomechanical properties of epoxy composites. Express Polymer Letters. 4(6):382–395

    Google Scholar 

  47. Qiao R, Deng H, Putz KW, Brinson LC (2011) Effect of particle agglomeration and interphase on the glass transition temperature of polymer nanocomposites. Journal of Polymer Science Part B: Polymer Physics. 49(10):740–748

    CAS  Google Scholar 

  48. Giddappanavar SV, Pol AS, Shikkeri SB (2015) Study of thermal properties by influence of filler material on carbon-epoxy composites International Research Journal of. Engineering and Technology 2(4):836–842

    Google Scholar 

  49. Takenaka K (2011) Negative thermal expansion materials: technological key for control of thermal expansion. Science and Technology of Advanced Materials. 13:1–11

    Google Scholar 

  50. Jakobsen J, Andreasen Jensen M, J H. (2013) Thermo-Mechanical Characterisation of In-Plane Properties for CSM E-glass Epoxy Polymer Composite Materials – Part 1: Thermal and Chemical Strain. Polymer Testing. 32(2):1350–1357

    CAS  Google Scholar 

  51. Banerjee S, Kar KK (2017) Impact of degree of sulfonation on microstructure, thermal, thermomechanical and physicochemical properties of sulfonated poly ether ether ketone. Polymer 109:176–186

    CAS  Google Scholar 

  52. Ahmad Z, Sagheer AF (2015) Novel epoxy–silica nano-composites using epoxy-modified silica hyper-branched structure. Prog Org Coat 80:65–70

    CAS  Google Scholar 

  53. Mordina B, Tiwari RK, Setua DK, Sharma A (2014) Magnetorheology of Polydimethylsiloxane Elastomer/FeCo3 Nanocomposite. J Phys Chem C 118(44):25684–25703

    CAS  Google Scholar 

  54. Gent AN (1958) On the relation between indentation hardnessand young's modulus. Trans Inst Rubber Ind 34:46–57

  55. Onyechi PC, Asiegbu KO, Igwegbe CA, Nwosu MC (2015) Effect of particle size on the mechanical properties of periwinkle shell reinforced polyester composite (PRPC). International Journal of Scientific & Engineering Research 6(3):1064–1096

    Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Director Defence Materials and Stores Research & Development Establishment (Kanpur, India) for providing laboratory facilities for this research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kavita Chauhan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chauhan, K., Tiwari, R.K. Study of thermomechanical properties of glycidoxypropyl trimethoxy silane functionalized nanosilica/amine terminated poly (butadiene-co-acrylonitrile) rubber modified novolac epoxy composites for high performance applications. J Polym Res 27, 319 (2020). https://doi.org/10.1007/s10965-020-02278-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-020-02278-z

Keywords

Navigation