Skip to main content
Log in

Using facile one-pot thiol-ene reaction to prepare elastomers filled with silica

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Novel elastomers filled with different contents of silica through a two-step one-pot thiol-ene reaction were reported. Two monomers of poly (ethylene glycol) dimethacrylate and 1,6-hexanedithiol were used in the first step to synthesize a vinyl-terminated prepolymer at room temperature. In the second step, silica and chemical cross-linker trimethylolpropane tris(3-mercaptopropionate) were directly added to the prepolymer in sequence and transparent elastomers were obtained in 30 min at room temperature. The cross-linking kinetics and mechanical properties in the presence of different contents of silica were investigated in detail by rheological, tensile and cyclic loading measurements. It was found that silica had a significant reinforcing effect on the mechanical properties of the elastomers. Our synthetic method is simple, solvent-free and energy- and cost-efficient. Our findings pave a new way to fabricate novel sulfur-containing elastomers using thiol-ene chemistry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. White L (1999) Extreme oilfield conditions push elastomers to the limit. Euro Rubber J 181(1):24–27

    Google Scholar 

  2. Zhang X, Lu C, Liang M (2009) Properties of natural rubber vulcanizates containing mechanochemically devulcanized ground tire rubber. J Polym Res 16(4):411–419

    CAS  Google Scholar 

  3. Nicholson DW, Nelson NW (1990) Finite-element analysis in design with rubber. Rubber Chem Technol 63(3):368–406

    Google Scholar 

  4. Weng G, Huang G, Lei H, Qu L, Nie Y, Wu J (2011) Crack initiation and evolution in vulcanized natural rubber under high temperature fatigue. Polym Degrad Stab 96(12):2221–2228

    CAS  Google Scholar 

  5. Nielsen LE (1969) Cross-linking–effect on physical properties of polymers. J Macromol Sci C 3(1):69–103

    CAS  Google Scholar 

  6. Flory PJ, Rabjohn N, Shaffer MC (1949) Dependence of elastic properties of vulcanized rubber on the degree of cross linking. J Polym Sci 4(3):225–245

    CAS  Google Scholar 

  7. Akiba M, Hashim AS (1997) Vulcanization and crosslinking in elastomers. Prog Polym Sci 22(3):475–521

    CAS  Google Scholar 

  8. Zhang G, Zhou X, Liang K, Guo B, Li X, Wang Z et al (2019) Mechanically robust and recyclable EPDM rubber composites by a green cross-linking strategy. ACS Sustainable Chem Eng 7(13):11712–11720

    CAS  Google Scholar 

  9. Coran AY (2003) Chemistry of the vulcanization and protection of elastomers: a review of the achievements. J Appl Polym Sci 87(1):24–30

    CAS  Google Scholar 

  10. Zhou X, Wang L, Wei Z, Weng G, He J (2019) An adaptable tough elastomer with moisture-triggered switchable mechanical and fluorescent properties. Adv Funct Mater 29(34):1903543

    Google Scholar 

  11. Weng G, Chang A, Fu K, Kang J, Ding Y, Chen Z (2016) Crack growth mechanism of styrene-butadiene rubber filled with silica nanoparticles studied by small angle X-ray scattering. RSC Adv 6(10):8406–8415

    CAS  Google Scholar 

  12. Wang Y-Q, Wang Y, Zhang H-F, Zhang L-Q (2006) A novel approach to prepare a gradient polymer with a wide damping temperature range by in-situ chemical modification of rubber during vulcanization. Macromol Rapid Commun 27(14):1162–1167

    CAS  Google Scholar 

  13. Liu J, Wang S, Tang Z, Huang J, Guo B, Huang G (2016) Bioinspired engineering of two different types of sacrificial bonds into chemically cross-linked cis-1,4-polyisoprene toward a high-performance elastomer. Macromolecules 49(22):8593–8604

    CAS  Google Scholar 

  14. Ikeda Y, Yasuda Y, Hijikata K, Tosaka M, Kohjiya S (2008) Comparative study on strain-induced crystallization behavior of peroxide cross-linked and sulfur cross-linked natural rubber. Macromolecules 41(15):5876–5884

    CAS  Google Scholar 

  15. Loan LD (1967) Mechanism of peroxide vulcanization of elastomers. Rubber Chem Technol 40(1):149–176

    CAS  Google Scholar 

  16. Dluzneski PR (2001) Peroxide vulcanization of elastomers. Rubber Chem Technol 74(3):451–492

    CAS  Google Scholar 

  17. González L, Rodríguez A, Marcos A, Chamorro C (1996) Crosslink reaction mechanisms of diene rubber with dicumyl peroxide. Rubber Chem Technol 69(2):203–214

    Google Scholar 

  18. Kade MJ, Burke DJ, Hawker CJ (2010) The power of thiol-ene chemistry. J Polym Sci Part A: Polym Chem 48(4):743–750

    CAS  Google Scholar 

  19. Lowe AB (2010) Thiol-ene “click” reactions and recent applications in polymer and materials synthesis. Polym Chem 1(1):17–36

    CAS  Google Scholar 

  20. Cramer NB, Bowman CN (2001) Kinetics of thiol–ene and thiol–acrylate photopolymerizations with real-time fourier transform infrared. J Polym Sci Part A: Polym Chem 39(19):3311–3319

    CAS  Google Scholar 

  21. Campos LM, Killops KL, Sakai R, Paulusse JMJ, Damiron D, Drockenmuller E et al (2008) Development of thermal and photochemical strategies for thiol−ene click polymer functionalization. Macromolecules 41(19):7063–7070

    CAS  Google Scholar 

  22. Dondoni A (2008) The emergence of thiol–ene coupling as a click process for materials and bioorganic chemistry. Angew Chem Int Ed 47(47):8995–8997

    CAS  Google Scholar 

  23. Sun J, Schlaad H (2010) Thiol−ene clickable polypeptides. Macromolecules 43(10):4445–4448

    CAS  Google Scholar 

  24. Feng Y, Hu Y, Man L, Yuan T, Zhang C, Yang Z (2019) Biobased thiol-epoxy shape memory networks from gallic acid and vegetable oils. Euro Polym J 112:619–628

    CAS  Google Scholar 

  25. Hoyle CE, Bowman CN (2010) Thiol–ene click chemistry. Angew Chem Int Ed 49(9):1540–1573

    CAS  Google Scholar 

  26. Killops KL, Campos LM, Hawker CJ (2008) Robust, efficient, and orthogonal synthesis of dendrimers via thiol-ene “click” chemistry. J Am Chem Soc 130(15):5062–5064

    CAS  PubMed  Google Scholar 

  27. Luo C, Zuo J, Yuan Y, Lin X, Lin F, Zhao J (2015) Preparation and properties of a high refractive index optical resin prepared via click chemistry method. Opt Mater Express 5(3):462–468

    Google Scholar 

  28. Nair DP, Podgórski M, Chatani S, Gong T, Xi W, Fenoli CR et al (2014) The thiol-michael addition click reaction: a powerful and widely used tool in materials chemistry. Chem Mater 26(1):724–744

    CAS  Google Scholar 

  29. Mansfeld U, Pietsch C, Hoogenboom R, Becer CR, Schubert US (2010) Clickable initiators, monomers and polymers in controlled radical polymerizations – a prospective combination in polymer science. Polym Chem 1(10):1560–1598

    CAS  Google Scholar 

  30. Cole MA, Bowman CN (2012) Synthesis and characterization of thiol–ene functionalized siloxanes and evaluation of their crosslinked network properties. J Polym Sci Part A: Polym Chem 50(20):4325–4333

    CAS  Google Scholar 

  31. Lee WM, Upadhya A, Reece PJ, Phan TG (2014) Fabricating low cost and high performance elastomer lenses using hanging droplets. Biomed Opt Express 5(5):1626–1635

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Wilbur JL, Jackman RJ, Whitesides GM, Cheung EL, Lee LK, Prentiss MG (1996) Elastomeric optics. Chem Mater 8(7):1380–1385

    CAS  Google Scholar 

  33. Li H, Thanneeru S, Jin L, Guild CJ, He J (2016) Multiblock thermoplastic elastomers via one-pot thiol–ene reaction. Polym Chem 7(29):4824–4832

    CAS  Google Scholar 

  34. Shin J, Matsushima H, Chan JW, Hoyle CE (2009) Segmented polythiourethane elastomers through sequential thiol−ene and thiol−isocyanate reactions. Macromolecules 42(9):3294–3301

    CAS  Google Scholar 

  35. Ware TH, Perry ZP, Middleton CM, Iacono ST, White TJ (2015) Programmable liquid crystal elastomers prepared by thiol–ene photopolymerization. ACS Macro Lett 4(9):942–946

    CAS  Google Scholar 

  36. Zhang D, Dumont M-J (2018a) Reprocessable 5-hydroxymethylfurfural derivative-based thermoset elastomers synthesized through the thiol-Michael and Diels-Alder reactions. J Mater Sci 53(15):11116–11129

    CAS  Google Scholar 

  37. Ma SJ, Mannino SJ, Wagner NJ, Kloxin CJ (2013) Photodirected formation and control of wrinkles on a thiol–ene elastomer. ACS Macro Lett 2(6):474–477

    CAS  Google Scholar 

  38. Zhang D, Dumont M-J (2018b) 5-Hydroxymethylfurfural derivative based thermoplastic elastomers synthesized via thiol-Michael addition reaction utilizing poly(lactic acid) as hard end blocks. Macromol Chem Phys 219(11):1800039

    Google Scholar 

  39. Derboven P, D’hooge DR, Stamenovic MM, Espeel P, Marin GB, Du Prez FE et al (2013) Kinetic modeling of radical thiol–ene chemistry for macromolecular design: importance of side reactions and diffusional limitations. Macromolecules 46(5):1732–1742

    CAS  Google Scholar 

  40. Heinrich G, Klüppel M, Vilgis TA (2002) Reinforcement of elastomers. Curr Opin Solid St Mater Sci 6(3):195–203

    CAS  Google Scholar 

  41. Fröhlich J, Niedermeier W, Luginsland HD (2005) The effect of filler–filler and filler–elastomer interaction on rubber reinforcement. Compos Part A: Appl Sci Manufac 36(4):449–460

    Google Scholar 

  42. Bueche F (1961) Mullins effect and rubber–filler interaction. J Appl Polym Sci 5(15):271–281

    CAS  Google Scholar 

  43. Leblanc JL (2002) Rubber–filler interactions and rheological properties in filled compounds. Prog Polym Sci 27(4):627–687

    CAS  Google Scholar 

  44. Edwards DC (1990) Polymer-filler interactions in rubber reinforcement. J Mater Sci 25(10):4175–4185

    CAS  Google Scholar 

  45. Wolff S (1996) Chemical aspects of rubber reinforcement by fillers. Rubber Chem Technol 69(3):325–346

    CAS  Google Scholar 

  46. Weng G, Huang G, Qu L, Nie Y, Wu J (2010) Large-scale orientation in a vulcanized stretched natural rubber network: proved by in situ synchrotron X-ray diffraction characterization. J Phys Chem B 114(21):7179–7188

    CAS  PubMed  Google Scholar 

  47. Lommerse JPM, Price SL, Taylor R (1997) Hydrogen bonding of carbonyl, ether, and ester oxygen atoms with alkanol hydroxyl groups. J Comput Chem 18(6):757–774

    CAS  Google Scholar 

  48. Srivastava SK, Mishra YK (2018) Nanocarbon reinforced rubber nanocomposites: detailed insights about mechanical, dynamical mechanical properties, Payne, and Mullin effects. Nanomaterials 8(11):945

    PubMed Central  Google Scholar 

  49. Sun H, Liu X, Yu B, Feng Z, Ning N, Hu G-H et al (2019) Simultaneously improved dielectric and mechanical properties of silicone elastomer by designing a dual crosslinking network. Polym Chem 10(5):633–645

    CAS  Google Scholar 

  50. Rey T, Chagnon G, Le Cam JB, Favier D (2013) Influence of the temperature on the mechanical behaviour of filled and unfilled silicone rubbers. Polym Test 32(3):492–501

    CAS  Google Scholar 

  51. Gan L, Shang S, Yuen CWM, Jiang S-x, Luo NM (2015) Facile preparation of graphene nanoribbon filled silicone rubber nanocomposite with improved thermal and mechanical properties. Compos Part B: Eng 69:237–242

    CAS  Google Scholar 

  52. Yeoh OH (1993) Some forms of the strain energy function for rubber. Rubber Chem Technol 66(5):754–771

    CAS  Google Scholar 

Download references

Acknowledgements

G.W. is grateful for the financial support of Zhejiang Provincial Natural Science Foundation of China (grant No. LY19E030002), Natural Science Foundation of Ningbo (grant No. 2019A610133) and K. C. Wong Magna Fund in Ningbo University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gengsheng Weng.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuang, H., Yin, Q., Zhang, R. et al. Using facile one-pot thiol-ene reaction to prepare elastomers filled with silica. J Polym Res 27, 317 (2020). https://doi.org/10.1007/s10965-020-02298-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-020-02298-9

Keywords

Navigation