Skip to main content

Advertisement

Log in

Genome-Wide Investigation and Expression Analysis of K+-Transport-Related Gene Families in Chinese Cabbage (Brassica rapa ssp. pekinensis)

  • Original Article
  • Published:
Biochemical Genetics Aims and scope Submit manuscript

Abstract

Potassium (K+) transport and channel systems play vital roles in plant growth, development and responses to various stresses. In this study, 44 putative K+-transport-related genes (18K+ uptake permease (KUP)/high-affinity K+ (HAK)/K+ transporter (KT) family genes and 26 channel genes, including 18 Shaker family genes and 8K+ channel outward (KCO) family genes) were identified in the genome of Chinese cabbage (Brassica rapa ssp. pekinensis). To clarify the molecular evolution of each family in Chinese cabbage, phylogenetic analysis and assessments of the gene structures, conserved motifs, chromosomal locations, gene duplications, expression patterns and cis-acting elements of the 44 putative K+-transport-related genes were performed. The phylogenetic analysis showed that these genes could be classified into five clades [KUP/HAK/KTs, KCOs, Kout, Kin (KAT) and Kin (AKT)] and that the members of a given clade shared conserved exon–intron distributions and motif compositions. These K+-transport-related genes were unevenly distributed over all ten chromosomes, including four duplicated gene pairs that implied an expansion of K+-transport-related genes in Chinese cabbage. Analyses of Illumina RNA-seq data for these 44K+-transport-related genes indicated tissue-/organ-specific expression patterns. In addition, an overall evaluation showed that the expression levels of KUP/HAK/KT genes were significantly higher than those of potassium channel genes in six tissues. Promoter cis-acting element analysis revealed that these 44K+-transport-related genes may be associated with responses to 10 abiotic stresses, primarily light, methyl jasmonate (MeJA) and abscisic acid (ABA). Our results provide a systematic and comprehensive overview of K+-transport-related gene families in Chinese cabbage and establish a foundation for further research on K+ absorption and transport functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ahn SJ, Shin R, Schachtman DP (2004) Expression of KT/KUP genes in Arabidopsis and the role of root hairs K+ uptake. Plant Physiol 134:1135–1145

    CAS  PubMed  PubMed Central  Google Scholar 

  • Amrutha RN, Sekhar PN, Varshney RK, Kishor PBK (2007) Genome-wide analysis and identification of genes related to potassium transporter families in rice (Oryza sativa L.). Plant Sci 172:708–721

    CAS  Google Scholar 

  • Anderson JA, Huprikar SS, Kochian LV, Lucas WJ, Gaber RF (1992) Functional expression of a probable Arabidopsis thaliana potassium channel in Saccharomyces cerevisiae. Proc Natl Acad Sci USA 89:3736–3740

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ashley MK, Grant M, Grabov A (2006) Plant responses to potassium deficiencies: a role for potassium transport proteins. J Exp Bot 57:425–436

    CAS  PubMed  Google Scholar 

  • Bailey TL, Elkan C (1995) The value of prior knowledge in discovering motifs with MEME. Proc Int Conf Intell Syst Mol Biol 3:21–29

    CAS  PubMed  Google Scholar 

  • Banuelos MA, Garciadeblas B, Cubero B, Rodrigueznavarro A (2002) Inventory and functional characterization of the HAK potassium transporters of rice. Plant Physiol 130:784–795

    PubMed  PubMed Central  Google Scholar 

  • Bauer CS, Hoth S, Haga K, Philippar K, Aoki N, Hedrich R (2000) Differential expression and regulation of K+ channels in the maize coleoptile: molecular and biophysical analysis of cells isolated from cortex and vasculature. Plant J 24:139–145

    CAS  PubMed  Google Scholar 

  • Blanc G, Wolfe KH (2004) Widespread paleopolyploidy in model plant species inferred from age distributions of duplicate genes. Plant Cell 16:1667–1678

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen G, Hu QD, Luo L, Yang TY, Zhang S, Hu YB, Yu L, Xu GH (2015) Rice potassium transporter OsHAK1 is essential for maintaining potassium-mediated growth and functions in salt tolerance over low and high potassium concentration ranges. Plant Cell Environ 38:2747–2765

    CAS  PubMed  Google Scholar 

  • Chen CJ, Chen H, He YH, Xia R (2018) TBtools, a Toolkit for Biologists integrating various HTS-data handling tools with a user-friendly interface. BioRxiv. https://doi.org/10.1101/289660

    Article  Google Scholar 

  • Czempinski K, Frachisse JM, Maurel C, Barbier-Brygoo H, Mueller-Roeber B (2002) Vacuolar membrane localization of the Arabidopsis “two-pore” K+ channel KCO1. Plant J 29:809–820

    CAS  PubMed  Google Scholar 

  • Davies C, Shin R, Liu W, Thomas MR, Schachtman DP (2006) Transporters expressed during grape berry (Vitis vinifera L.) development are associated with an increase in berry size and berry potassium accumulation. J Exp Bot 57:3209–3216

    CAS  PubMed  Google Scholar 

  • De Grassi A, Lanave C, Saccone C (2008) Genome duplication and gene-family evolution: the case three OXPHOS gene families. Gene 421:1–6

    PubMed  Google Scholar 

  • Desbrosses G, Kopka C, Ott T, Udvardi MK (2004) Lotus japonicus LjKUP is induced late during nodule development and encodes a potassium transporter of the plasma membrane. Mol Plant Microbe Interact 17:789–797

    CAS  PubMed  Google Scholar 

  • Emanuelsson O, Nielsen H, Brunak S, von Heijne G (2000) Predicting subcellular localization of proteins based on their N-terminal amino acid sequence. J Mol Biol 300:1005–1016

    CAS  PubMed  Google Scholar 

  • Feng XM, Wang YJ, Zhang NN, Wu ZL, Zeng QY, Wu JY, Wu XB, Wang L, Zhang JS, Qi YW (2020) Genome-wide systematic characterization of the HAK/KUP/KT gene family and its expression profile during plant growth and in response to low-K+ stress in Saccharum. BMC Plant Biol. https://doi.org/10.1186/s12870-019-2227-7

    Article  PubMed  PubMed Central  Google Scholar 

  • Garciadeblas B, Benito B, Rodriguez-Navarro A (2002) Molecular cloning and functional expression in bacteria of the potassium transporters CnHAK1 and CnHAK2 of the seagrass Cymodocea nodosa. Plant Mol Biol 50:623–633

    CAS  PubMed  Google Scholar 

  • Gierth M, Maser P, Schroeder JI (2005) The potassium transporter AtHAK5 functions in K+ deprivation-induced high-affinity K+ uptake and AKT1 K+ channel contribution to K+ uptake kinetics in Arabidopsis roots. Plant Physiol 137:1105–1114

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gobert A, Isayenkov S, Voelker C, Czempinski K, Maathuis FJM (2007) The two-pore channel TPK1 gene encodes the vacuolar K+ conductance and plays a role in K+ homeostasis. Proc Natl Acad Sci USA 104:10726–10731

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gomez-Porras JL, Ria-o-Pachón DM, Benito B, Haro R, Sklodowski K, Rodríguez-Navarro A, Dreyer I (2012) Phylogenetic analysis of K+ transporters in bryophytes, lycophytes, and flowering plants indicates a specialization of vascular plants. Front Plant Sci 3:167

    PubMed  PubMed Central  Google Scholar 

  • Gupta M, Qiu XH, Wang L, Xie WB, Zhang CJ, Xiong LZ, Lian XM, Zhang QF (2008) KT/HAK/KUP potassium transporters gene family and their whole-life cycle expression profile in rice (Oryza sativa). Mol Genet Genomics 280:437

    CAS  PubMed  Google Scholar 

  • He CY, Cui K, Duan AG, Zeng YF, Zhang JG (2012) Genome-wide and molecular evolution analysis of the Poplar KT/HAK/KUP potassium transporter gene family. Ecol Evol 2:1996–2004

    PubMed  PubMed Central  Google Scholar 

  • Hu B, Jin JP, Guo AY, Zhang H, Luo JC, Gao G (2015) GSDS 2.0: an upgraded gene feature visualization server. Bioinformatics 31:1296–1297

    PubMed  Google Scholar 

  • Kim EJ, Kwak JM, Uozumi N, Schroeder JI (1998) AtKUP1: an Arabidopsis gene encoding high-affinity potassium transport activity. Plant Cell 10:51–62

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar S, Stecher G, Tamura K (2016) MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33:1870–1874

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lebaudy A, Véry AA, Sentenac H (2007) K+ channel activity in plants: genes, regulations and functions. FEBS Lett 581:2357–2366

    CAS  PubMed  Google Scholar 

  • Leigh RA, Wyn Jones RG (1984) A hypothesis relating critical potassium concentrations for growth to the distribution and functions of this ion in the plant cell. New Phytol 97:1–13

    CAS  Google Scholar 

  • Li HY, Si DX (2019) Effect of potassium on uptake and translocation of sodium and potassium in Chinese cabbage under NaCl stress. J Plant Nutr 42:250–260

    CAS  Google Scholar 

  • Li Z, Jiang HY, Zhou LY, Deng L, Lin YX, Peng XJ, Yan HW, Cheng BJ (2014) Molecular evolution of the HD-ZIP I gene family in legume genomes. Gene 533:218–228

    CAS  PubMed  Google Scholar 

  • Li T, Chen XG, Xu WH, Chi SL, Zhao WY, Li YH, Zhang CL, Feng DY, He ZM, Wang ZY (2018) Effects of coated slow-release fertilizer with urease and nitrification inhibitors on nitrogen release characteristic and uptake and utilization of nitrogen, phosphorus and potassium in cabbage. Int J Agric Biol 20:422–430

    Google Scholar 

  • Liang MX, Gao YC, Mao TT, Zhang XY, Zhang SY, Zhang HX, Song ZZ (2020) Characterization and expression of KT/HAK/KUP transporter family genes in willow under potassium deficiency, drought, and salt stresses. BioMed Res Int 6:1–12

    Google Scholar 

  • Maere S, De Bodt S, Raes J, Casneuf T, Van Montagu M, Kuiper M, Van de Peer Y (2005) Modeling gene and genome duplications in eukaryotes. Proc Natl Acad Sci USA 102:5454–5459

    CAS  PubMed  PubMed Central  Google Scholar 

  • Martinez-Cordero MA, Martinez V, Rubio F (2004) Cloning and functional characterization of the high-affinity K+ transporter HAK1 of pepper. Plant Mol Biol 56:413–421

    CAS  PubMed  Google Scholar 

  • Maser P, Thomine S, Schroeder JI, Ward JM, Hirschi K, Sze H, Talke IN, Amtmann A, Maathuis FJ, Sanders D, Harper JF, Tchieu J, Gribskov M, Persans MW, Salt DE, Kim SA, Guerinot ML (2001) Phylogenetic relationships within cation transporter families of Arabidopsis. Plant Physiol 126:1646–1667

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nieves-Cordones M, Martinez-Cordero MA, Martinez V, Rubio F (2007) An NH4+-sensitive component dominates high-affinity K+ uptake in tomato plants. Plant Sci 172:273–280

    CAS  Google Scholar 

  • Nieves-Cordones M, Rodenas R, Chavanieu A, Rivero RM, Martinez V, Gaillard I, Rubio F (2016) Uneven HAK/KUP/KT protein diversity among angiosperms: species distribution and perspectives. Front Plant Sci 7:127

    PubMed  PubMed Central  Google Scholar 

  • Peng S, Huang ZC, Ou YLJ, Cheng J, Zeng FH (2011) Research progress of artificial promoter in plant genetic engineering. Plant Physiol J 47:141–146 (in Chinese)

    CAS  Google Scholar 

  • Qi Z, Hampton CR, Shin R, Barkla BJ, White PJ, Schachtman DP (2008) The high affinity K+ transporter AtHAK5 plays a physiological role in planta at very low K+ concentrations and provides a caesium uptake pathway in Arabidopsis. J Exp Bot 59:595–607

    CAS  PubMed  Google Scholar 

  • Quintero FJ, Blatt MR (1997) A new family of KC transporters from Arabidopsis that are conserved across phyla. FEBS Lett 415:206–211

    CAS  PubMed  Google Scholar 

  • Rehman HM, Nawaz MA, Shah ZH, Daur I, Khatoon S, Yang SH, Chung G (2017) In-depth genomic and transcriptomic analysis of five K+ transporter gene families in soybean confirm their differential expression for nodulation. Front Plant Sci 8:804

    PubMed  PubMed Central  Google Scholar 

  • Rubio F, Santamaria GE, Rodrigueznavarro A (2000) Cloning of Arabidopsis and barley cDNAs encoding HAK potassium transporters in root and shoot cells. Physiol Plant 109:34–43

    CAS  Google Scholar 

  • Saeed AI, Bhagabati NK, Braisted JC, Liang W, Sharov V, Howe EA, Li J, Thiagarajan M, White JA, Quackenbush J (2006) TM4 microarray software suite. Method Enzymol 411:134–193

    CAS  Google Scholar 

  • Santa-Maria GE, Rubio F, Dubcovsky J, Rodriguez-Navarro A (1997) The HAK1 gene of barley is a member of a large gene family and encodes a high-affinity potassium transporter. Plant Cell 9:2281–2289

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sentenac H, Bonneaud N, Minet M, Lacroute F, Salmon J, Gaymard F, Grignon C (1992) Cloning and expression in yeast of a plant potassium-ion transport system. Science 256:663–665

    CAS  PubMed  Google Scholar 

  • Shabala S, Pottosin II (2010) Potassium and potassium-permeable channels in plant salt tolerance. In: Demidchik V, Maathuis F (eds) Ion channels and plant stress responses. Springer, Berlin, pp 87–110

    Google Scholar 

  • Su H, Golldack D, Zhao CS, Bohnert HJ (2002) The expression of HAK-type K+ transporters is regulated in response to salinity stress in common ice plant. Plant Physiol 129:1482–1493

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sustr M, Soukup A, Tylova E (2019) Potassium in root growth and development. Plants (Basel) 8:435

    CAS  Google Scholar 

  • Song ZB, Wu XF, Gao YL, Gui X, Jiao FC, Chen XJ, Li YP (2019) Genome-wide analysis of the HAK potassium transporter gene family reveals asymmetrical evolution in tobacco (Nicotiana tabacum). Genome 62(4):267–278. https://doi.org/10.1139/gen-2018-0187

    Article  CAS  PubMed  Google Scholar 

  • Tong CB, Wang XW, Yu JY, Wu J, Li WS, Huang JY, Dong CH, Hua W, Liu SY (2013) Comprehensive analysis of RNA-seq data reveals the complexity of the transcriptome in Brassica rapa. BMC Genomics 14:689

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Wu WH (2013) Potassium transport and signaling in higher plants. Annu Rev Plant Biol 64:451–476

    CAS  PubMed  Google Scholar 

  • Wang YH, Garvin DF, Kochian LV (2002) Rapid induction of regulatory and transporter genes in response to rhosphorus, potassium, and iron deficiencies in tomato roots. Evidence for cross talk and root/rhizosphere-mediated signals. Plant Physiol 130:1361–1370

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang LQ, Guo K, Li Y, Tu YY, Hu HZ, Wang BR, Cui XC, Peng LC (2010) Expression profiling and integrative analysis of the CESA/CSL superfamily in rice. BMC Plant Biol 10:1

    Google Scholar 

  • Wang XW, Wang HZ, Wang J, Sun RF, Wu J, Liu SY et al (2011) The genome of the mesopolyploid crop species Brassica rapa. Nat Genet 43:1035–1039

    CAS  PubMed  Google Scholar 

  • Wu M, Li Y, Chen DM, Liu HL, Zhu DY, Xiang Y (2016) Genome-wide identification and expression analysis of the IQD gene family in moso bamboo (Phyllostachys edulis). Sci Rep 6:24520

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xie Q, Ma LY, Tan P, Deng WT, Huang C, Liu DM, Lin WH, Su Y (2020) Multiple high-affinity K+ transporters and ABC transporters involved in K+ uptake/transport in the potassium-hyperaccumulator plant Phytolacca acinosa Roxb. Plants (Basel) 9:470

    CAS  Google Scholar 

  • Yang ZF, Gao QS, Sun CS, Li WJ, Gu SL, Xu CW (2009) Molecular evolution and functional divergence of HAK potassium transporter gene family in rice (Oryza sativa L.). J Genet Genomics 36:161–172

    CAS  PubMed  Google Scholar 

  • Yang TY, Zhang S, Hu YB, Wu FC, Hu QD, Chen G, Cai J, Wu T, Moran N, Yu L, Xu GH (2014) The role of a potassium transporter OsHAK5 in potassium acquisition and transport from roots to shoots in rice at low potassium supply levels. Plant Physiol 166:945–959

    PubMed  PubMed Central  Google Scholar 

  • Zhang Z, Li J, Zhao XQ, Wang J, Wong GKS, Yu J (2006) KaKs calculating Ka and Ks through model selection and model averaging. Genom Proteom Bioinform 4:259–263

    CAS  Google Scholar 

  • Zhang ZB, Zhang JW, Chen YJ, Li RF, Wang HZ, Wei JH (2012) Genome-wide analysis and identification of HAK potassium transporter gene family in maize (Zea mays L.). Mol Biol Rep 39:8465–8473

    CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the Scientific Research Foundation for High-level Talent from Henan Institute of Science and Technology (2017034) and Science and Technology Project in Henan Province (202102110159).

Author information

Authors and Affiliations

Authors

Contributions

JPY and CWS designed the experiments; JPY and CWS analysed the data; JPY and CWS contributed materials/reagents/analysis tools; JPY and CWS wrote the paper. All the authors approved the final manuscript.

Corresponding author

Correspondence to Jingping Yuan.

Ethics declarations

Conflict of interest

All the authors declare that they have no conflicts of interest.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed Consent This article does not contain any studies with human participants.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

10528_2020_10004_MOESM1_ESM.pdf

Supplementary Figure S1 Putative isoelectric points and molecular weights of K+-transport-related genes in Chinese cabbage (PDF 669 kb)

Supplementary Table S1 (XLS 33 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, C., Yuan, J. Genome-Wide Investigation and Expression Analysis of K+-Transport-Related Gene Families in Chinese Cabbage (Brassica rapa ssp. pekinensis). Biochem Genet 59, 256–282 (2021). https://doi.org/10.1007/s10528-020-10004-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10528-020-10004-z

Keywords

Navigation