Skip to main content
Log in

Numerical analysis for the non-Newtonian flow over stratified stretching/shrinking inclined sheet with the aligned magnetic field and nonlinear convection

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

In the existence of an aligned magnetic field over the inclined shrinking/stretching stratified sheet in a non-Darcy porous medium, the two-dimensional boundary layer flow of an upper-convected Maxwell fluid is analyzed. The heat transfer effects are acknowledged by using the nonlinear convection. The system of partial differential equations, which administrates the distinctive properties of flow and heat transfer, is depleted into ordinary differential equations with the use of similarity variables. The governing equations are determined numerically by utilizing the shooting technique. The response of varied implicated parameters on velocity, skin friction, and temperature accounts is inspected graphically and displayed in the table. It is noted that local inertia coefficient is accountable for the reduction in the velocity profile and the aligned magnetic field has the opposite relation for the shrinking and stretching sheet.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Abbreviations

ab :

Dimensional constant

\(\gamma \) :

Aligned angle

\(B_{0}\) :

Magnetic field strength

\(\zeta \) :

Similarity variable

\(\beta \) :

Dimensionless Maxwell parameter

\(C_{b}\) :

Drag coefficient

\(c_{p}\) :

Specific heat

S :

Suction/injection parameter

\(u_{w}\) :

Stretching velocity

\(\delta \) :

Mixed convection variable

\(\beta _{t}\) :

Nonlinear thermal variable

\(f^{\prime }\) :

Dimensionless velocity

g :

Gravitational acceleration

\(T_{0}\) :

Reference temperature

\(\mathrm{Gr}_{x}\) :

Grashof number

\(C_{f}\) :

Skin friction coefficient

k :

Thermal conductivity

\(\left( u,v\right) \) :

Velocity components

M :

Magnetic parameter

\(\epsilon \) :

Stretching/shrinking parameter

\(\lambda \) :

Relaxation time parameter

\(v_{0}\) :

Mass flux velocity

\(\left( x,y\right) \) :

Coordinate axis

F :

Variable inertia coefficient

\(\mathrm{Nu}_{x}\) :

Local Nusselt number

\(\mathrm{Pr}\) :

Prandtl number

\(q_{w}\) :

Surface heat flux

\(\mathrm{Re}_{x}\) :

Local Reynolds number

(cd):

Initial guesses

T :

Fluid temperature

\(T_{w}\) :

Fluid temperature at wall

\(T_{\infty }\) :

Ambient liquid temperature

\(a_{1},d_{1}\) :

Dimensional constant

\(F_{r}\) :

Local inertia coefficient

\(T_{f}\) :

Heated liquid temperature

\(\beta _{1}\) :

Linear thermal coefficient

\(\beta _{2}\) :

Nonlinear expansion coefficient

\(\theta \) :

Dimensionless temperature

\(\mu \) :

Dynamic viscosity

\(\nu \) :

Kinematic viscosity

\(\rho \) :

Fluid density

\(\sigma \) :

Electrical conductivity

\(\tau _{w}\) :

Shear stress

\(S_{1}\) :

Thermal stratification variable

\(\phi \) :

Dimensionless concentration

\(\omega \) :

Stream function

K :

Porous medium permeability

\(\lambda _{1}\) :

Porosity parameter

References

  1. Thomason, J., Jenkins, P., Yang, L.: Glass fibre strength—review with relation to composite recycling. Fibers 4(2), 18 (2016)

    Article  Google Scholar 

  2. Sakidis, B.C.: Boundary layer behavior on continuous solid surfaces. AIChE J 7, 26–28 (1961)

    Article  Google Scholar 

  3. Turkyilmazoglu, M., Pop, I.: Exact analytical solutions for the flow and heat transfer near the stagnation point on a stretching/shrinking sheet in a Jeffrey fluid. Int. J. Heat Mass Trans. 57(1), 82–88 (2013)

    Article  Google Scholar 

  4. Harris, J.: Rheology and non-Newtonian Flow. Longman Publishing Group, London (1977)

    MATH  Google Scholar 

  5. Ramzan, M., Bilal, M., Chung, J.D., Farooq, U.: Mixed convective flow of Maxwell nanofluid past a porous vertical stretched surface—an optimal solution. Results Phys. 6, 1072–1079 (2016)

    Article  Google Scholar 

  6. Ramzan, M., Bilal, M., Chung, J.D.: Influence of homogeneous-heterogeneous reactions on MHD 3D Maxwell fluid flow with Cattaneo–Christov heat flux and convective boundary condition. J. Mol. Liq. 230, 415–422 (2017)

    Article  Google Scholar 

  7. Bilal, M., Sagheer, M., Hussain, S.: Three dimensional MHD upper-convected Maxwell nanofluid flow with nonlinear radiative heat flux. Alex. Eng. J. 57, 383–390 (2018)

    Article  Google Scholar 

  8. Crane, L.J.: Flow past a stretching plate. Zeitschrift für angewandte Mathematik und Physik ZAMP 21(4), 645–647 (1970)

    Article  Google Scholar 

  9. Chen, C.K., Char, M.: Heat transfer of a continuous stretching surface with suction or blowing. J. Math. Anal. Appl. 135, 568–580 (1988)

    Article  MathSciNet  Google Scholar 

  10. Gupta, P.S., Gupta, A.S.: Heat and mass transfer on a stretching sheet with suction or blowing. Can. J. Chem. Eng. 55(6), 744–746 (1977)

    Article  Google Scholar 

  11. Bilal, M., Sagheer, M., Hussain, S., Mehmood, Y.: MHD stagnation point flow of Williamson fluid over a stretching cylinder with variable thermal conductivity and homogeneous–heterogeneous reaction. Commun. Theor. Phys. 67, 688–696 (2017)

    Article  MathSciNet  Google Scholar 

  12. Ramzan, M., Bilal, M., Kanwal, S., Chung, J.D.: Effects of variable thermal conductivity and non-linear thermal radiation past an eyring powell nanofluid flow with chemical reaction. Commun. Theor. Phys. 67, 723–731 (2017)

    Article  MathSciNet  Google Scholar 

  13. Ramzan, M., Bilal, M., Chung, J.D.: Effects of thermal and solutal stratification on Jeffrey magneto-nanofluid along an inclined stretching cylinder with thermal radiation and heat generation/absorption. Int. J. Mech. Sci. 132, 317–324 (2017)

    Article  Google Scholar 

  14. Haroun, M.H.: On electrohydrodynamic flow of Jeffrey fluid through a heating vibrating cylindrical tube with moving endoscope. Arch. Appl. Mech. 90, 1305–1315 (2020)

    Article  Google Scholar 

  15. Akram, S., Razia, A., Afzal, F.: Effects of velocity second slip model and induced magnetic field on peristaltic transport of non-Newtoniany fluid in the presence of double-diffusivity convection in nanofluids. Arch. Appl. Mech. 90, 1583–1603 (2020)

    Article  Google Scholar 

  16. Turkyilmazoglu, M.: Effects of uniform radial electric field on the MHD heat and fluid flow due to a rotating disk. Int. J. Eng. Sci. 51, 233–240 (2012)

    Article  MathSciNet  Google Scholar 

  17. Turkyilmazoglu, M.: Latitudinally deforming rotating sphere. Appl. Math. Model. 71, 1–11 (2019)

    Article  MathSciNet  Google Scholar 

  18. Turkyilmazoglu, M.: Magnetic field and slip effects on the flow and heat transfer of stagnation point Jeffrey fluid over deformable surfaces. Zeitschrift für Naturforschung A 71(6), 549–556 (2016)

    Article  Google Scholar 

  19. Turkyilmazoglu, M.: MHD natural convection in saturated porous media with heat generation/absorption and thermal radiation: closed-form solutions. Arch. Mech. 71(1), 49–64 (2019)

    MathSciNet  MATH  Google Scholar 

  20. Forchheimer, P.: Wasserbewegung durch boden. z. ver. deutsch. Z. Ver. Deutsch, Ing. 45, 1782–1788 (1901)

    Google Scholar 

  21. Muskat, M.: The flow of homogeneous fluids through porous media. Number 532.5 M88 (1946)

  22. Pal, D., Mondal, H.: Hydromagnetic convective diffusion of species in Darcy–Forchheimer porous medium with non-uniform heat source/sink and variable viscosity. Int. J. Heat Mass Trans. 39(7), 913–917 (2012)

    Article  Google Scholar 

  23. Ganesh, N.V., Hakeem, A.A., Ganga, B.: Darcy–Forchheimer flow of hydromagnetic nanofluid over a stretching/shrinking sheet in a thermally stratified porous medium with second order slip, viscous and Ohmic dissipations effects. Ain Shams Eng. J. 9(4), 939–951 (2016)

    Article  Google Scholar 

  24. Gireesha, B.J., Mahanthesh, B., Manjunatha, P.T., Gorla, R.S.R.: Numerical solution for hydromagnetic boundary layer flow and heat transfer past a stretching surface embedded in non-Darcy porous medium with fluid-particle suspension. J. Niger. Math. Soc. 34(3), 267–285 (2015)

    Article  MathSciNet  Google Scholar 

  25. Rashidi, S., Dehghan, M., Ellahi, R., Riaz, M., Jamal-Abad, M.T.: Study of stream wise transverse magnetic fluid flow with heat transfer around an obstacle embedded in a porous medium. J. Magn. Magn. Mater. 378, 128–137 (2015)

    Article  Google Scholar 

  26. Ahmed, S.E.: Mixed convection in thermally anisotropic non-Darcy porous medium in double lid-driven cavity using Bejan’s heatlines. Alex. Eng. J. 55(1), 299–309 (2016)

    Article  Google Scholar 

  27. Hayat, T., Haider, F., Muhammad, T., Alsaedi, A.: On Darcy–Forchheimer flow of viscoelastic nanofluids: a comparative study. J. Mol. Liq. 233, 278–287 (2017)

    Article  Google Scholar 

  28. Kang, Z., Zhao, D., Rui, H.: Block-centered finite difference methods for general Darcy–Forchheimer problems. Appl. Math. Comput. 307, 124–140 (2017)

    MathSciNet  MATH  Google Scholar 

  29. Sarpkaya, T.: Flow of non-Newtonian fluids in a magnetic field. AICHE J. 7(2), 324–328 (1961)

    Article  Google Scholar 

  30. Hayat, T., Imtiaz, M., Alsaedi, A.: Mhd 3D flow of nanofluid in presence of convective conditions. J. Mol. Liq. 212, 203–208 (2015)

    Article  Google Scholar 

  31. Hsiao, K.L.: MHD mixed convection for viscoelastic fluid past a porous wedge. Int. J. Non-Linear Mech. 46(1), 1–8 (2011)

    Article  Google Scholar 

  32. Hsiao, K.L.: Corrigendum to “Heat and mass mixed convection for MHD viscoelastic fluid past a stretching sheet with Ohmic dissipation” [Commun Nonlinear Sci Numer Simulat 15 (2010) 1803–1812)]. Commun. Nonlinear Sci. Numer. Simul. 28(1–3), 232 (2015)

    Article  MathSciNet  Google Scholar 

  33. Ganji, D.D., Malvandi, A.: Natural convection of nanofluids inside a vertical enclosure in the presence of a uniform magnetic field. Powder Technol. 263, 50–57 (2014)

    Article  Google Scholar 

  34. Raju, C.S.K., Sandeep, N., Sulochana, C., Sugunamma, V., Babu, M.J.: Radiation, inclined magnetic field and cross-diffusion effects on flow over a stretching surface. J. Niger. Math. Soc. 34(2), 169–180 (2015)

    Article  MathSciNet  Google Scholar 

  35. Sajid, T., Sagheer, M., Hussain, S., Bilal, M.: Darcy–Forchheimer flow of Maxwell nanofluid flow with nonlinear thermal radiation and activation energy. AIP Adv. 8, 035102 (2018)

    Article  Google Scholar 

  36. Abel, M.S., Tawade, J.V., Nandeppanavar, M.M.: MHD flow and heat transfer for the upper-convected Maxwell fluid over a stretching sheet. Meccanica 47, 385–393 (2012)

    Article  MathSciNet  Google Scholar 

  37. Waini, I., Zainal, N., Khashiie, N.S.: Aligned magnetic field effects on flow and heat transfer of the upper-convected Maxwell fluid over a stretching/shrinking sheet. MATEC Web of Conf. 97, 01078 (2017)

    Article  Google Scholar 

  38. Bhattacharyya, K.: Effects of heat source/sink on MHD flow and heat transfer over a shrinking sheet with mass suction. Chem. Eng. Res. Bull. 15(1), 12–17 (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Bilal.

Ethics declarations

Conflicts of interest

Authors have no conflict of interest regarding this publication.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bilal, M., Nazeer, M. Numerical analysis for the non-Newtonian flow over stratified stretching/shrinking inclined sheet with the aligned magnetic field and nonlinear convection. Arch Appl Mech 91, 949–964 (2021). https://doi.org/10.1007/s00419-020-01798-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-020-01798-w

Keywords

Navigation