Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Strength of tonic T cell receptor signaling instructs T follicular helper cell–fate decisions

Abstract

T follicular helper (TFH) cells are critical in adaptive immune responses to pathogens and vaccines; however, what drives the initiation of their developmental program remains unclear. Studies suggest that a T cell antigen receptor (TCR)-dependent mechanism may be responsible for the earliest TFH cell–fate decision, but a critical aspect of the TCR has been overlooked: tonic TCR signaling. We hypothesized that tonic signaling influences early TFH cell development. Here, two murine TCR-transgenic CD4+ T cells, LLO56 and LLO118, which recognize the same antigenic peptide presented on major histocompatibility complex molecules but experience disparate strengths of tonic signaling, revealed low tonic signaling promotes TFH cell differentiation. Polyclonal T cells paralleled these findings, with naive Nur77 expression distinguishing TFH cell potential. Two mouse lines were also generated to both increase and decrease tonic signaling strength, directly establishing an inverse relationship between tonic signaling strength and TFH cell development. Our findings elucidate a central role for tonic TCR signaling in early TFH cell-lineage decisions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: High- and low-tonic-signaling cells (LLO56 and LLO118, respectively) generate equivalent TH1 immune responses, but differ in their ability to produce a TFH population.
Fig. 2: LLO56 and LLO118 cells have distinct TFH effector qualities.
Fig. 3: Low-tonic-signaling cells (LLO118 cells) support long-lived, high-affinity antibody production, whereas high-tonic-signaling cells (LLO56 cells) do not.
Fig. 4: LLO56 TFH cell impairment is independent of IL-2 signaling and cannot be rescued by increasing TCR activation strength.
Fig. 5: Increasing basal TCR signaling in LLO118 cells inhibits TFH development.
Fig. 6: Nur77 expression distinguishes TFH outcome in the polyclonal repertoire.
Fig. 7: Restricting the self-pMHC repertoire decreases tonic signaling and enhances TFH development in polyclonal CD4+ T cells.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Crotty, S. Follicular helper CD4 T cells (TFH). Annu. Rev. Immunol. 29, 621–663 (2011).

    CAS  PubMed  Google Scholar 

  2. Crotty, S. T follicular helper cell biology: a decade of discovery and diseases. Immunity 50, 1132–1148 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Vinuesa, C. G., Linterman, M. A., Yu, D. & MacLennan, I. C. Follicular helper T cells. Annu. Rev. Immunol. 34, 335–368 (2016).

    CAS  PubMed  Google Scholar 

  4. Webb, L. M. C. & Linterman, M. A. Signals that drive T follicular helper cell formation. Immunology 152, 185–194 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Wu, T. et al. TCF1 is required for the T follicular helper cell response to viral infection. Cell Rep. 12, 2099–2110 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Baumjohann, D., Okada, T. & Ansel, K. M. Cutting edge: distinct waves of BCL6 expression during T follicular helper cell development. J. Immunol. 187, 2089–2092 (2011).

    CAS  PubMed  Google Scholar 

  7. Choi, Y. S. et al. ICOS receptor instructs T follicular helper cell versus effector cell differentiation via induction of the transcriptional repressor Bcl6. Immunity 34, 932–946 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. DiToro, D. et al. Differential IL-2 expression defines developmental fates of follicular versus nonfollicular helper T cells. Science 361, eaao2933 (2018).

    PubMed  PubMed Central  Google Scholar 

  9. Tubo, N. J. et al. Single naive CD4+ T cells from a diverse repertoire produce different effector cell types during infection. Cell 153, 785–796 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Fazilleau, N., McHeyzer-Williams, L. J., Rosen, H. & McHeyzer-Williams, M. G. The function of follicular helper T cells is regulated by the strength of T cell antigen receptor binding. Nat. Immunol. 10, 375–384 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Krishnamoorthy, V. et al. The IRF4 gene regulatory module functions as a read–write integrator to dynamically coordinate T helper cell fate. Immunity 47, 481–497.e7 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Snook, J. M., Kim, C. & Williams, M. A. TCR signal strength controls the differentiation of CD4+ effector and memory T cells. Sci. Immunol. 3, eaas9103 (2018).

    PubMed  PubMed Central  Google Scholar 

  13. Keck, S. et al. Antigen affinity and antigen dose exert distinct influences on CD4 T-cell differentiation. Proc. Natl Acad. Sci. USA 111, 14852–14857 (2014).

    CAS  PubMed  Google Scholar 

  14. Ploquin, M. J., Eksmond, U. & Kassiotis, G. B cells and TCR avidity determine distinct functions of CD4+ T cells in retroviral infection. J. Immunol. 187, 3321–3330 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Stefanova, I., Dorfman, J. R. & Germain, R. N. Self-recognition promotes the foreign antigen sensitivity of naive T lymphocytes. Nature 420, 429–434 (2002).

    CAS  PubMed  Google Scholar 

  16. Persaud, S. P., Parker, C. R., Lo, W. L., Weber, K. S. & Allen, P. M. Intrinsic CD4+ T cell sensitivity and response to a pathogen are set and sustained by avidity for thymic and peripheral complexes of self peptide and MHC. Nat. Immunol. 15, 266–274 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. van Oers, N. S. et al. Constitutive tyrosine phosphorylation of the T-cell receptor (TCR) ζ subunit: regulation of TCR-associated protein tyrosine kinase activity by TCR ζ. Mol. Cell. Biol. 13, 5771–5780 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Daley, S. R. et al. Rasgrp1 mutation increases naive T-cell CD44 expression and drives mTOR-dependent accumulation of Helios+ T cells and autoantibodies. Elife 2, e01020 (2013).

    PubMed  PubMed Central  Google Scholar 

  19. van Oers, N. S., Killeen, N. & Weiss, A. ZAP-70 is constitutively associated with tyrosine-phosphorylated TCR ζ in murine thymocytes and lymph node T cells. Immunity 1, 675–685 (1994).

    CAS  PubMed  Google Scholar 

  20. Myers, D. R. et al. Tonic LAT–HDAC7 signals sustain Nur77 and Irf4 expression to tune naive CD4 T cells. Cell Rep. 19, 1558–1571 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Markegard, E. et al. Basal LAT–diacylglycerol–RasGRP1 signals in T cells maintain TCRα gene expression. PLoS ONE 6, e25540 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Zinzow-Kramer, W. M., Weiss, A. & Au-Yeung, B. B. Adaptation by naive CD4+ T cells to self-antigen-dependent TCR signaling induces functional heterogeneity and tolerance. Proc. Natl Acad. Sci. USA 116, 15160–15169 (2019).

    CAS  PubMed  Google Scholar 

  23. Milam, A. A. V. et al. Tonic signaling inversely regulates the basal metabolism of CD4+ T cells. Immunohorizons 4, 485–497 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Azzam, H. S. et al. CD5 expression is developmentally regulated by T cell receptor (TCR) signals and TCR avidity. J. Exp. Med. 188, 2301–2311 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Zikherman, J., Parameswaran, R. & Weiss, A. Endogenous antigen tunes the responsiveness of naive B cells but not T cells. Nature 489, 160–164 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Moran, A. E. et al. T cell receptor signal strength in Treg and iNKT cell development demonstrated by a novel fluorescent reporter mouse. J. Exp. Med. 208, 1279–1289 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Bhandoola, A. et al. Peripheral expression of self-MHC-II influences the reactivity and self-tolerance of mature CD4+ T cells: evidence from a lymphopenic T cell model. Immunity 17, 425–436 (2002).

    CAS  PubMed  Google Scholar 

  28. Viehmann Milam, A. A. et al. Tuning T cell signaling sensitivity alters the behavior of CD4+ T cells during an immune response. J. Immunol. 200, 3429–3437 (2018).

    Google Scholar 

  29. McHeyzer-Williams, L. J. & McHeyzer-Williams, M. G. Developmentally distinct TH cells control plasma cell production in vivo. Immunity 20, 231–242 (2004).

    CAS  PubMed  Google Scholar 

  30. Weber, K. S. et al. Distinct CD4+ helper T cells involved in primary and secondary responses to infection. Proc. Natl Acad. Sci. USA 109, 9511–9516 (2012).

    CAS  PubMed  Google Scholar 

  31. Pepper, M., Pagan, A. J., Igyarto, B. Z., Taylor, J. J. & Jenkins, M. K. Opposing signals from the Bcl6 transcription factor and the interleukin-2 receptor generate T helper 1 central and effector memory cells. Immunity 35, 583–595 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Yu, D. et al. The transcriptional repressor Bcl-6 directs T follicular helper cell lineage commitment. Immunity 31, 457–468 (2009).

    CAS  PubMed  Google Scholar 

  33. Johnston, R. J. et al. Bcl6 and Blimp-1 are reciprocal and antagonistic regulators of T follicular helper cell differentiation. Science 325, 1006–1010 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Nurieva, R. I. et al. Bcl6 mediates the development of T follicular helper cells. Science 325, 1001–1005 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Zhu, J., Yamane, H. & Paul, W. E. Differentiation of effector CD4 T cell populations. Annu. Rev. Immunol. 28, 445–489 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Valderrama, C., Clark, A., Urano, F., Unanue, E. R. & Carrero, J. A. Listeria monocytogenes induces an interferon-enhanced activation of the integrated stress response that is detrimental for resolution of infection in mice. Eur. J. Immunol. 47, 830–840 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Good-Jacobson, K. L. & Shlomchik, M. J. Plasticity and heterogeneity in the generation of memory B cells and long-lived plasma cells: the influence of germinal center interactions and dynamics. J. Immunol. 185, 3117–3125 (2010).

    CAS  PubMed  Google Scholar 

  38. Frey, A., Di Canzio, J. & Zurakowski, D. A statistically defined endpoint titer determination method for immunoassays. J. Immunol. Methods 221, 35–41 (1998).

    CAS  PubMed  Google Scholar 

  39. Ahmed, N. N., Grimes, H. L., Bellacosa, A., Chan, T. O. & Tsichlis, P. N. Transduction of interleukin-2 antiapoptotic and proliferative signals via Akt protein kinase. Proc. Natl Acad. Sci. USA 94, 3627–3632 (1997).

    CAS  PubMed  Google Scholar 

  40. Govern, C. C., Paczosa, M. K., Chakraborty, A. K. & Huseby, E. S. Fast on-rates allow short dwell time ligands to activate T cells. Proc. Natl Acad. Sci. USA 107, 8724–8729 (2010).

    CAS  PubMed  Google Scholar 

  41. Mandl, J. N., Monteiro, J. P., Vrisekoop, N. & Germain, R. N. T cell-positive selection uses self-ligand binding strength to optimize repertoire recognition of foreign antigens. Immunity 38, 263–274 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Lo, W. L., Donermeyer, D. L. & Allen, P. M. A voltage-gated sodium channel is essential for the positive selection of CD4+ T cells. Nat. Immunol. 13, 880–887 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Tubo, N. J. et al. Most microbe-specific naive CD4+ T cells produce memory cells during infection. Science 351, 511–514 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Bocharov, G., Argilaguet, J. & Meyerhans, A.Understanding experimental LCMV infection of mice: the role of mathematical models. J. Immunol. Res. 2015, 739706 (2015).

    PubMed  PubMed Central  Google Scholar 

  45. Fung-Leung, W. P. et al. Antigen presentation and T cell development in H2–M-deficient mice. Science 271, 1278–1281 (1996).

    CAS  PubMed  Google Scholar 

  46. Miyazaki, T. et al. Mice lacking H2–M complexes, enigmatic elements of the MHC class II peptide-loading pathway. Cell 84, 531–541 (1996).

    CAS  PubMed  Google Scholar 

  47. Martin, W. D. et al. H2–M mutant mice are defective in the peptide loading of class II molecules, antigen presentation, and T cell repertoire selection. Cell 84, 543–550 (1996).

    CAS  PubMed  Google Scholar 

  48. Brundage, R. A., Smith, G. A., Camilli, A., Theriot, J. A. & Portnoy, D. A. Expression and phosphorylation of the Listeria monocytogenes ActA protein in mammalian cells. Proc. Natl Acad. Sci. USA 90, 11890–11894 (1993).

    CAS  PubMed  Google Scholar 

  49. Barber, D. L. et al. Restoring function in exhausted CD8 T cells during chronic viral infection. Nature 439, 682–687 (2006).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank D. Kreamalmeyer for mouse breeding and care, D. Brinja and E. Lantelme for assistance with sorting by flow cytometry, D. Oakley and M. Shih of the Washington University Center for Cellular Imaging for assistance with AxioScan use and image analysis, W. L. Lo for insights on the manuscript and M. White and the Genome Engineering and iPSC Center at Washington University for generation of the H2-DMaf/f mouse line. This work was supported by National Institutes of Health research grants AI138393 (to J.M.B.), AI130152-01A1 (to T.E.), AI139875 (to T.E.) and AI139540 (to P.M.A), the Leukemia and Lymphoma Society Scholar Award (to T.E.) and the Washington University Rheumatic Diseases Research Resource-Based Center, funded by NIH grant P30AR073752 (to P.M.A).

Author information

Authors and Affiliations

Authors

Contributions

J.M.B. designed and performed the experiments and wrote the manuscript. A.A.V.M., D.L.D., S.H., Y.X. and T.E. performed the experiments. P.M.A. designed the experiments and wrote the manuscript.

Corresponding author

Correspondence to Paul M. Allen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Zoltan Fehervari was the primary editor on this article and managed its editorial process and peer review in collaboration with the rest of the editorial team.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bartleson, J.M., Viehmann Milam, A.A., Donermeyer, D.L. et al. Strength of tonic T cell receptor signaling instructs T follicular helper cell–fate decisions. Nat Immunol 21, 1384–1396 (2020). https://doi.org/10.1038/s41590-020-0781-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41590-020-0781-7

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology