Skip to main content
Log in

One-pot synthesis and characterization of in-house engineered silver nanoparticles from Flacourtia jangomas fruit extract with effective antibacterial profiles

  • Original Research
  • Published:
Journal of Nanostructure in Chemistry Aims and scope Submit manuscript

A Correction to this article was published on 04 January 2021

This article has been updated

Abstract

Nanobiotechnology is an emerging field among researchers. Currently the development of plant-mediated biogenic nanoparticles is gaining much attention. It is notable that the biogenic nanoparticles particularly silver nanoparticles are therapeutically more effective than its chemically synthesized form. Thus, here in, the development of silver nanoparticles (Fj-AgNPs) using aqueous extract of ripe fruit of Flacourtia jangomas as a reducing agent is investigated. The developed Fj-AgNPs were additionally compared with ammine modified silver nanoparticles (Am-AgNPs), developed through chemical route using the reported approach and confirm the phyto-reduction of Ag+ to Ag0.UV–visible spectrum has exhibited a peak at 418 nm and FTIR peak profile (at 1587.6, 1386.4, and 1076 cm−1 with corresponding compounds) in addition to the diffraction peak at 38°, 44°, 64°,78° in PXRD spectrum confirmed the synthesis of Fj-AgNPs with 8.29 nm average crystallite size. Enhanced anti-bacterial effect is observed in the case of Fj-AgNPs as compared to Am-AgNps. These results refer to the idea that the use of the aqueous extract of ripe fruit of Flacourtia jangomas could be a good replacement of EDTA in the synthesis of silver nanoparticles.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Change history

References

  1. Das, C.A., Kumar, V.G., Dhas, T.S., Karthick, V., Govindaraju, K., Joselin, J.M., Baalamurugan, J.: Antibacterial activity of silver nanoparticles (biosynthesis): a short review on recent advances. Biocatal. Agric. Biotechnol. 27, 101593 (2020)

    Google Scholar 

  2. Fadeel, B., Garcia-Bennett, A.E.: Better safe than sorry: understanding the toxicological properties of inorganic nanoparticles manufactured for biomedical applications. Adv. Drug Deliv. Rev. 62(3), 362–374 (2010)

    CAS  PubMed  Google Scholar 

  3. Yaqoob, A.A., Ahmad, H., Parveen, T., Ahmad, A., Oves, M., Ismail, I.M., Qari, H.A., Umar, K., Mohamad Ibrahim, M.N.: Recent advances in metal decorated nanomaterials and their various biological applications: a review. Front. Chem. 8, 341 (2020)

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Qais, F.A., Shafiq, A., Ahmad, I., Husain, F.M., Khan, R.A., Hassan, I.: Green synthesis of silver nanoparticles using Carum copticum: assessment of its quorum sensing and biofilm inhibitory potential against gram negative bacterial pathogens. Microb. Pathog. 144, 104172 (2020)

    PubMed  Google Scholar 

  5. Yaqoob, A.A., Umar, K., Ibrahim, M.N.M.: Silver nanoparticles: various methods of synthesis, size affecting factors and their potential applications–a review. Appl. Nanosci. 10, 1369–1378 (2020)

    CAS  Google Scholar 

  6. Varadavenkatesan, T., Selvaraj, R., Vinayagam, R.: Green synthesis of silver nanoparticles using Thunbergia grandiflora flower extract and its catalytic action in reduction of Congo red dye. Mater. Today Proc. 23, 39–42 (2020)

    CAS  Google Scholar 

  7. Wani, I.A., Khatoon, S., Ganguly, A., Ahmed, J., Ganguli, A.K., Ahmad, T.: Silver nanoparticles: large scale solvothermal synthesis and optical properties. Mater. Res. Bull. 45(8), 1033–1038 (2010)

    CAS  Google Scholar 

  8. Wani, I.A., Ganguly, A., Ahmed, J., Ahmad, T.: Silver nanoparticles: ultrasonic wave assisted synthesis, optical characterization and surface area studies. Mater. Lett. 65(3), 520–522 (2011)

    CAS  Google Scholar 

  9. Tran, Q.H., Le, A.-T.: Silver nanoparticles: synthesis, properties, toxicology, applications and perspectives. Adv. Natural Sci. Nanosci. Nanotechnol. 4(3), 033001 (2013)

    Google Scholar 

  10. Chernousova, S., Epple, M.: Silver as antibacterial agent: ion, nanoparticle, and metal. Angew. Chem. Int. Edit. 52(6), 1636–1653 (2013)

    CAS  Google Scholar 

  11. Rasheed, T., Bilal, M., Iqbal, H.M., Li, C.: Green biosynthesis of silver nanoparticles using leaves extract of Artemisia vulgaris and their potential biomedical applications. Coll. Surf. B Biointerf. 158, 408–415 (2017)

    CAS  Google Scholar 

  12. Rasheed, T., Bilal, M., Li, C., Nabeel, F., Khalid, M., Iqbal, H.M.: Catalytic potential of bio-synthesized silver nanoparticles using Convolvulus arvensis extract for the degradation of environmental pollutants. J. Photochem. Photobiol. B Biol. 181, 44–52 (2018)

    CAS  Google Scholar 

  13. Bilal, M., Mehmood, S., Rasheed, T., Iqbal, H.: Bio-catalysis and biomedical perspectives of magnetic nanoparticles as versatile carriers. Magnetochemistry 5(3), 42 (2019)

    CAS  Google Scholar 

  14. Evanoff Jr., D.D., Chumanov, G.: Synthesis and optical properties of silver nanoparticles and arrays. ChemPhysChem 6(7), 1221–1231 (2005)

    CAS  PubMed  Google Scholar 

  15. Bilal, M., Rasheed, T., Iqbal, H.M.N., Hu, H., Zhang, X.: Silver nanoparticles: biosynthesis and antimicrobial potentialities. Int. J. Pharmacol. 13(7), 832–845 (2017)

    CAS  Google Scholar 

  16. Javaid, A., Oloketuyi, S.F., Khan, M.M., Khan, F.: Diversity of bacterial synthesis of silver nanoparticles. BioNanoScience 8(1), 43–59 (2018)

    Google Scholar 

  17. Sharma, V.K., Yngard, R.A., Lin, Y.: Silver nanoparticles: green synthesis and their antimicrobial activities. Adv. Coll. Interf. Sci. 145(1–2), 83–96 (2009)

    CAS  Google Scholar 

  18. Haider, A., Kang, I.-K.: Preparation of silver nanoparticles and their industrial and biomedical applications: a comprehensive review. Adv. Mater. Sci. Eng. 2015,Article ID 165257, (2015).

  19. Fatimah, I., Hidayat, H., Nugroho, B.H., Husein, S.: Ultrasound-assistedss biosynthesis of Silver and Gold Nanoparticles using Clitoria ternatea flower. S. Afr. J. Chem. Eng. 34, 97–106 (2020)

    Google Scholar 

  20. Han, D.-W., Woo, Y.I., Lee, M.H., Lee, J.H., Lee, J., Park, J.-C.: In-vivo and in-vitro biocompatibility evaluations of silver nanoparticles with antimicrobial activity. J. Nanosci. Nanotechnol. 12(7), 5205–5209 (2012)

    CAS  PubMed  Google Scholar 

  21. Ahmad, T., Wani, I.A., Manzoor, N., Ahmed, J., Asiri, A.M.: Biosynthesis, structural characterization and antimicrobial activity of gold and silver nanoparticles. Coll. Surf. B Biointerf. 107, 227–234 (2013)

    CAS  Google Scholar 

  22. Wani, I.A., Khatoon, S., Ganguly, A., Ahmed, J., Ahmad, T.: Structural characterization and antimicrobial properties of silver nanoparticles prepared by inverse microemulsion method. Coll. Surf. B Biointerf. 101, 243–250 (2013)

    CAS  Google Scholar 

  23. Suganya, K.U., Govindaraju, K., Kumar, V.G., Dhas, T.S., Karthick, V., Singaravelu, G., Elanchezhiyan, M.: Blue green alga mediated synthesis of gold nanoparticles and its antibacterial efficacy against Gram positive organisms. Mater. Sci. Eng. C 47, 351–356 (2015)

    Google Scholar 

  24. Fatimah, I., Hidayat, H., Nugroho, B.H., Husein, S.: Ultrasound-assisted biosynthesis of silver and gold nanoparticles using Clitoria ternatea flower. S. Afr. J. Chem. Eng. 34, 97–106 (2020)

    Google Scholar 

  25. Vithiya, K., Sen, S.: Biosynthesis of nanoparticles. Int. J. Pharmaceut. Sci. Res. 2(11), 2781 (2011)

    CAS  Google Scholar 

  26. Rai, M., Ingle, A.P., Gupta, I.R., Birla, S.S., Yadav, A.P., Abd-Elsalam, K.A.: Potential role of biological systems in formation of nanoparticles: mechanism of synthesis and biomedical applications. Curr. Nanosci. 9(6), 576–587 (2013)

    CAS  Google Scholar 

  27. Shankar, P.D., Shobana, S., Karuppusamy, I., Pugazhendhi, A., Ramkumar, V.S., Arvindnarayan, S., Kumar, G.: A review on the biosynthesis of metallic nanoparticles (gold and silver) using bio-components of microalgae: Formation mechanism and applications. Enzy. Microb. Technol. 95, 28–44 (2016)

    CAS  Google Scholar 

  28. Madkour, L.H.: Biogenic–biosynthesis metallic nanoparticles (MNPs) for pharmacological, biomedical and environmental nanobiotechnological applications. Chron. Pharmaceut. Sci. J. 2(1), 384–444 (2018)

    Google Scholar 

  29. Savithramma, N., Rao, M.L., Rukmini, K., Devi, P.S.: Antimicrobial activity of silver nanoparticles synthesized by using medicinal plants. Int. J. ChemTech. Res. 3(3), 1394–1402 (2011)

    CAS  Google Scholar 

  30. Ahmed, S., Ahmad, M., Swami, B.L., Ikram, S.: A review on plants extract mediated synthesis of silver nanoparticles for antimicrobial applications: a green expertise. J. Adv. Res. 7(1), 17–28 (2016)

    CAS  PubMed  Google Scholar 

  31. Borase, H.P., Salunke, B.K., Salunkhe, R.B., Patil, C.D., Hallsworth, J.E., Kim, B.S., Patil, S.V.: Plant extract: a promising biomatrix for ecofriendly, controlled synthesis of silver nanoparticles. Appl. Biochem. Biotechnol. 173(1), 1–29 (2014)

    CAS  PubMed  Google Scholar 

  32. Vahabi, K., Mansoori, G.A., Karimi, S.: Biosynthesis of silver nanoparticles by fungus Trichoderma reesei. Insci. J. 1(1), 65–79 (2011)

    CAS  Google Scholar 

  33. Gan, P.P., Li, S.F.Y.: Potential of plant as a biological factory to synthesize gold and silver nanoparticles and their applications. Rev. Environ. Sci. Bio/Technol. 11(2), 169–206 (2012)

    CAS  Google Scholar 

  34. Nagajyoti, P., TNVKV, P., TVM, S., Lee, K.D.: Bio-fabrication of silver nanoparticles using leaf extract of saururus chinenis. Digest J. Nanomater. Biostruct. (DJNB) 6(1) (2011).

  35. Rajathi, F.A.A., Parthiban, C., Kumar, V.G., Anantharaman, P.: Biosynthesis of antibacterial gold nanoparticles using brown alga, Stoechospermum marginatum (kützing). Spectrochim. Acta Part A Mol. Biomol. Spectroscop. 99, 166–173 (2012).

  36. Fatimah, I., Aftrid, Z.H.V.I.: Characteristics and antibacterial activity of green synthesized silver nanoparticles using red spinach (Amaranthus Tricolor L.) leaf extract. Green Chem. Lett. Rev. 12(1), 25–30 (2019)

    CAS  Google Scholar 

  37. Mohammadlou, M., Maghsoudi, H., Jafarizadeh-Malmiri, H.: A review on green silver nanoparticles based on plants: Synthesis, potential applications and eco-friendly approach. Int. Food Res. J. 23(2) (2016).

  38. Rupiasih, N.N., Aher, A., Gosavi, S., Vidyasagar, P.: Green synthesis of silver nanoparticles using latex extract of Thevetia peruviana: a novel approach towards poisonous plant utilization. In: Recent Trends in Physics of Material Science and Technology. pp. 1–10. Springer, (2015)

  39. Karnani, R.L., Chowdhary, A.: Biosynthesis of silver nanoparticle by eco-friendly method. Ind. J. Nanosci. 1(1), 25–31 (2013)

    Google Scholar 

  40. Kharissova, O.V., Dias, H.R., Kharisov, B.I., Pérez, B.O., Pérez, V.M.J.: The greener synthesis of nanoparticles. Trend. Biotechnol. 31(4), 240–248 (2013)

    CAS  Google Scholar 

  41. Narayanan, K.B., Sakthivel, N.: Green synthesis of biogenic metal nanoparticles by terrestrial and aquatic phototrophic and heterotrophic eukaryotes and biocompatible agents. Adv. Coll. Interf. Sci. 169(2), 59–79 (2011)

    CAS  Google Scholar 

  42. Hussain, I., Singh, N., Singh, A., Singh, H., Singh, S.: Green synthesis of nanoparticles and its potential application. Biotechnol. Lett. 38(4), 545–560 (2016)

    CAS  PubMed  Google Scholar 

  43. Ahmad, N., Sharma, S., Alam, M.K., Singh, V., Shamsi, S., Mehta, B., Fatma, A.: Rapid synthesis of silver nanoparticles using dried medicinal plant of basil. Coll. Surf. B Biointerf. 81(1), 81–86 (2010)

    CAS  Google Scholar 

  44. Oza, G., Reyes-Calderón, A., Mewada, A., Arriaga, L.G., Cabrera, G.B., Luna, D.E., Sharma, A.: Plant-based metal and metal alloy nanoparticle synthesis: a comprehensive mechanistic approach. J. Mater. Sci. 55(4), 1309–1330 (2020)

    CAS  Google Scholar 

  45. Pethakamsetty, L., Kothapenta, K., Nammi, H.R., Ruddaraju, L.K., Kollu, P., Yoon, S.G., Pammi, S.V.N.: Green synthesis, characterization and antimicrobial activity of silver nanoparticles using methanolic root extracts of Diospyros sylvatica. J. Environ. Sci. 55, 157–163 (2017)

    CAS  Google Scholar 

  46. Jayaraman, P., Doss, S., Sridevi, H., Mathivanan, K., Arumugam, P.: Green Synthesis of Silver nanoparticles (SNPs) using Aegle marmelos Linn. and its antibacterial potential. J. Bionanosci. 7(4), 432–439 (2013)

    CAS  Google Scholar 

  47. Rao, K.J., Paria, S.: Green synthesis of silver nanoparticles from aqueous Aegle marmelos leaf extract. Mater. Res. Bull. 48(2), 628–634 (2013)

    Google Scholar 

  48. Nithya Deva Krupa, A., Raghavan, V.: Biosynthesis of silver nanoparticles using Aegle marmelos (Bael) fruit extract and its application to prevent adhesion of bacteria: a strategy to control microfouling. Bioinorg. Chem. Appl. 2014, Article ID 949538 (2014).

  49. Li, S., Shen, Y., Xie, A., Yu, X., Qiu, L., Zhang, L., Zhang, Q.: Green synthesis of silver nanoparticles using Capsicum annuum L. extract. Green Chem. 9(8), 852–858 (2007)

    CAS  Google Scholar 

  50. Mendoza-Reséndez, R., Núñez, N.O., Barriga-Castro, E.D., Luna, C.: Synthesis of metallic silver nanoparticles and silver organometallic nanodisks mediated by extracts of Capsicum annuum var. aviculare (piquin) fruits. RSC Adv. 3(43), 20765–20771 (2013)

    Google Scholar 

  51. Ahluwalia, V., Elumalai, S., Kumar, V., Kumar, S., Sangwan, R.S.: Nano silver particle synthesis using Swertia paniculata herbal extract and its antimicrobial activity. Microb. Pathog. 114, 402–408 (2018)

    CAS  PubMed  Google Scholar 

  52. Rastogi, L., Arunachalam, J.: Sunlight based irradiation strategy for rapid green synthesis of highly stable silver nanoparticles using aqueous garlic (Allium sativum) extract and their antibacterial potential. Mater. Chem. Phy. 129(1–2), 558–563 (2011)

    CAS  Google Scholar 

  53. Rajoriya, P., Misra, P., Shukla, P.K., Ramteke, P.W.: Light-regulatory effect on the phytosynthesis of silver nanoparticles using aqueous extract of garlic (Allium sativum) and onion (Allium cepa) bulb. Curr Sci (2016). https://doi.org/10.18520/cs/v111/i8/1364-1368

    Article  Google Scholar 

  54. Dar, M.A., Ingle, A., Rai, M.: Enhanced antimicrobial activity of silver nanoparticles synthesized by Cryphonectria sp. evaluated singly and in combination with antibiotics. Nanomed. Nanotechnol. Biol. Med. 9(1), 105–110 (2013)

    CAS  Google Scholar 

  55. Durán, N., Durán, M., De Jesus, M.B., Seabra, A.B., Fávaro, W.J., Nakazato, G.: Silver nanoparticles: a new view on mechanistic aspects on antimicrobial activity. Nanomed. Nanotechnol. Biol. Med. 12(3), 789–799 (2016)

    Google Scholar 

  56. Wang, L., Hu, C., Shao, L.: The antimicrobial activity of nanoparticles: present situation and prospects for the future. Int. J. Nanomed. 12, 1227 (2017)

    CAS  Google Scholar 

  57. Srikar, S.K., Giri, D.D., Pal, D.B., Mishra, P.K., Upadhyay, S.N.: Green synthesis of silver nanoparticles: a review. Green Sust. Chem. 6(01), 34 (2016)

    CAS  Google Scholar 

  58. Sapsford, K.E., Algar, W.R., Berti, L., Gemmill, K.B., Casey, B.J., Oh, E., Stewart, M.H., Medintz, I.L.: Functionalizing nanoparticles with biological molecules: developing chemistries that facilitate nanotechnology. Chem. Rev. 113(3), 1904–2074 (2013)

    CAS  PubMed  Google Scholar 

  59. Nisar, P., Ali, N., Rahman, L., Ali, M., Shinwari, Z.K.: Antimicrobial activities of biologically synthesized metal nanoparticles: an insight into the mechanism of action. JBIC J. Biol. Inorg. Chem. 24(7), 929–941 (2019)

    CAS  PubMed  Google Scholar 

  60. Sagadevan, S., Vennila, S., Singh, P., Lett, J.A., Johan, M.R., Muthiah, B., Lakshmipathy, M.: Facile synthesis of silver nanoparticles using Averrhoa bilimbi L and Plum extracts and investigation on the synergistic bioactivity using in vitro models. Green Proc. Synth. 8(1), 873–884 (2019)

    CAS  Google Scholar 

  61. Saxena, M., Saxena, J., Nema, R., Singh, D., Gupta, A.: Phytochemistry of medicinal plants. J. Pharmacogn. Phytochem. 1(6) (2013).

  62. Sasi, S., Anjum, N., Tripathi, Y.: Ethnomedicinal, phytochemical and pharmacological aspects of Flacourtia jangomas: a review. Int. J. Pharm. Pharm. Sci. 10, 9–15 (2018)

    CAS  Google Scholar 

  63. Parvin, S., Kader, A., Sarkar, G.C., Hosain, S.B.: In-vitro studies of antibacterial and cytotoxic properties of Flacourtia jangomas. Int. J. Pharmaceut. Sci. Res. 2(11), 2786 (2011)

    Google Scholar 

  64. Srivastava, D., Prabhuji, S., Tripathi, A., Srivastava, R., Mishra, P.: In vitro antibacterial activities of Flacourtia jungomas (Lour.) Raeus. fruit extracts. Med. Plants-Int J. Phytomed. Related Indust. 4(2), 98–100 (2012)

    Google Scholar 

  65. Das, S., Dewan, N., Das, K.J., Kalita, D.: Preliminary phytochemical, antioxidant and antimicrobial studies of Flacourtia jangomas fruits. Int. J. Curr. Pharm. Res. 9(4), 86–91 (2017)

    CAS  Google Scholar 

  66. Dozol, H., Mériguet, G., Ancian, B., Cabuil, V., Xu, H., Wang, D., Abou-Hassan, A.: On the synthesis of Au nanoparticles using EDTA as a reducing agent. J. Phy. Chem. C 117(40), 20958–20966 (2013)

    CAS  Google Scholar 

  67. Khurshid, H., Rafiq, M., Nazir, F., Ali, I., Ahmed, M., Akbar, B., Ali, A.: 14. Antimicrobial properties of hydrogen peroxide and potash alum alone and in combination against clinical bacterial isolates. Pure Appl. Biol. 8(4), 2238–2247 (2019)

    CAS  Google Scholar 

  68. Mohamed, A.: Nutrient composition and antioxidant properties of ‘Kerekup’fruit (Flacourtia jangomas). Faculty of Applied Sciences, Universiti Teknologi Mara (2012)

  69. Dinesh, S., Karthikeyan, S., Arumugam, P.: Biosynthesis of silver nanoparticles from Glycyrrhiza glabra root extract. Arch. Appl. Sci. Res. 4(1), 178–187 (2012)

    Google Scholar 

  70. Mallikarjuna, K., Narasimha, G., Dillip, G., Praveen, B., Shreedhar, B., Lakshmi, C.S., Reddy, B., Raju, B.D.P.: Green synthesis of silver nanoparticles using Ocimum leaf extract and their characterization. Digest J. Nanomater. Biostruct. 6(1), 181–186 (2011)

    Google Scholar 

  71. Kharat, S.N., Mendhulkar, V.D.: Synthesis, characterization and studies on antioxidant activity of silver nanoparticles using Elephantopus scaber leaf extract. Mater. Sci. Eng. C 62, 719–724 (2016)

    CAS  Google Scholar 

  72. Shabnam, N., Sharmila, P., Kim, H., Pardha-Saradhi, P.: Light mediated generation of silver nanoparticles by spinach thylakoids/chloroplasts. PLoS ONE 11(12), e0167937 (2016)

    PubMed  PubMed Central  Google Scholar 

  73. Ankanna, S., Prasad, T., Elumalai, E., Savithramma, N.: Production of biogenic silver nanoparticles using Boswellia ovalifoliolata stem bark. Digest J. Nanomater. Biostruct. 5(2), 369–372 (2010)

    Google Scholar 

  74. Awwad, A.M., Salem, N.M.: Green synthesis of silver nanoparticles by Mulberry Leaves Extract. Nanosci. Nanotechnol. 2(4), 125–128 (2012)

    CAS  Google Scholar 

  75. Rauwel, P., Küünal, S., Ferdov, S., Rauwel, E.: A review on the green synthesis of silver nanoparticles and their morphologies studied via TEM. Adv. Mater. Sci. Eng. 2015, Article ID 682749 (2015).

Download references

Acknowledgements

Authors are thankful to the Department of Chemistry, The Islamia University of Bahawalpur, Pakistan for providing research facilities.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hafiz M. N. Iqbal or Muhammad Imran.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original version of this article was revised: Some of the text and Figure 10 has been corrected.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmad, F., Taj, M.B., Ramzan, M. et al. One-pot synthesis and characterization of in-house engineered silver nanoparticles from Flacourtia jangomas fruit extract with effective antibacterial profiles. J Nanostruct Chem 11, 131–141 (2021). https://doi.org/10.1007/s40097-020-00354-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40097-020-00354-w

Keywords

Navigation