Skip to main content
Log in

Preparation of Ethylbenzene and Isopropylbenzene Hydroperoxides in the N-Hydroxyphthalimide–Fe(III) Homogeneous Catalytic System and Use of Solutions in the Epoxidation of Olefins

  • CATALYSIS IN CHEMICAL AND PETROCHEMICAL INDUSTRY
  • Published:
Catalysis in Industry Aims and scope Submit manuscript

Abstract

The catalytic system N-hydroxyphthalimide–Fe(III) is used for the first time in the aerobic oxidation of alkylbenzenes to the corresponding hydroperoxides. It is shown that micro amounts of Fe(асас)3 or Fe(benz)3 increase the efficiency of radical catalyst N-hydroxyphthalimide; as a result, hydroperoxidation of ethylbenzene and isopropylbenzene proceeds at temperatures of 90–100 and 60°C, respectively, instead of in the temperature range of 150–120°C typical of noncatalytic synthesis. At substrate conversion of 10–20%, the selectivity for hydroperoxides remains at the level of 90–95%. Further successful tests of the obtained solutions in the MoO3/SiO2-catalyzed epoxidation of olefins without prior removal of the catalytic system components show the promise of using this low-temperature synthesis of hydroperoxides as the initial stage of olefin epoxidation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Tolstikov, G.A., Reaktsii gidroperekisnogo okisleniya (Hydropeoxidation Reactions), Moscow: Nauka, 1976.

  2. Sheldon, R.A., J. Mol. Catal., 1980, vol. 7, no. 1, pp. 107–126.

    Article  CAS  Google Scholar 

  3. US Patent 3351635, 1967.

  4. Paushkin, Ya.M., Adel’son, S.V., and Vishnyakova, T.P., Tekhnologiya neftekhimicheskogo sinteza (Technology of Petrochemical Synthesis), Moscow: Khimiya, 1973, part 1.

  5. Buijink, J.K.F., Lange, J.-P., Bos, A.N.R., Horton, A.D., and Niele, F.G.M., in Mechanisms in Homogeneous and Heterogeneous Epoxidation Catalysis, Oyama, S.T., Ed., Amsterdam: Elsevier, 2008, ch. 13, pp. 355–371.

    Google Scholar 

  6. Toribio, P.P., Gimeno-Gargallo, A., Capel-Sanchez, M.C., de Frutos, M.P., Campos-Martin, J.M., and Fierro, J.L.G., Appl. Catal., A, 2009, vol. 363, nos. 1–2, pp. 32–39.

  7. Kurganova, E.A., Selective aerobic oxidation of arylarenes to hydroperoxides in the presence of phthalimide catalysts, Doctoral. (Chem.) Dissertation, Yaroslavl: Yarosl. State Techn. Univ., 2017.

  8. Carrara, N., Badano, J.M., Betti, C., Lederhos, C., Busto, M., Vera, C., and Quiroga, M., in New Advances in Hydrogenation Processes—Fundamentals and Applications, Ravanchi, M.T., Ed., London: Intech, 2017, ch. 9. https://pdfs.semanticscholar.org/3dda/ 3aeed3cd8ebad74f07b846a9612e9b0e1aa0.pdf?_ga=2. 64257711.1676827604.1594567511-371476595.1592594199. Cited July 13, 2020.

  9. Sheldon, R.A. and Arends, I.W.C.E., J. Mol. Catal. A: Chem., 2006, vol. 251, nos. 1–2, pp. 200–214.

  10. Tsyskovskii, V.K., Prokof’ev, B.K., Pyl’nikov, V.I., Shcheglova, Ts.N., and Kopalkina, L.N., Zh. Prikl. Khim., 1974, vol. 47, no. 5, pp. 1112–1117.

    CAS  Google Scholar 

  11. Kharlampidi, Kh.E., Nurullina, N.M., Batyrshin, N.N., and Usmanova, Yu.Kh., Kinet. Catal., 2018, vol. 59, no. 3, pp. 328–332.

    Article  CAS  Google Scholar 

  12. Ishii, Y. and Sakaguchi, S., Catal. Today, 2006, vol. 117, nos. 1–3, pp. 105–113.

  13. Kurganova, E.A. and Koshel’, G.N., Ross. Khim. Zh., 2014, vol. 58, nos. 3–4, pp. 91–102.

  14. Kurganova, E.A., Dakhnavi, E.M., and Koshel’, G.N., Pet. Chem., 2017, vol. 57, no. 3, pp. 262–266.

    Article  CAS  Google Scholar 

  15. Sapunov, V.N., Kurganova, E.A., and Koshel, G.N., Int. J. Chem. Kinet., 2018, vol. 50, no. 1, pp. 3–14.

    Article  CAS  Google Scholar 

  16. Kuznetsova, N.I., Kuznetsova, L.I., Yakovina, O.A., Karmadonova, I.E., and Bal’zhinimaev, B.S., J. Catal. Lett., 2020, vol. 150, no. 4, pp. 1020–1027. https://doi.org/10.1007/s10562-019-02999-x

    Article  CAS  Google Scholar 

  17. Melone, L. and Punta, C., Beilstein J. Org. Chem., 2013, vol. 9, no. 1, pp. 1296–1310.

    Article  CAS  Google Scholar 

  18. Arends, I.W.C.E., Sasidharan, M., Kühnle, A., Duda, M., Jost, C., and Sheldon, R.A., Tetrahedron, 2002, vol. 58, no. 44, pp. 9055–9061.

    Article  CAS  Google Scholar 

  19. Orlińska, B. and Zawadiak, J., React. Kinet., Mech. Catal., 2013, vol. 110, pp. 15–30.

    Article  Google Scholar 

  20. Dobras, G. and Orlińska, B., Appl. Catal., A, 2018, vol. 561, pp. 59–67.

  21. Melone, L., Franchi, P., Lucarini, M., and Punta, C., Adv. Synth. Catal., 2013, vol. 355, no. 16, pp. 3210–3220.

    Article  CAS  Google Scholar 

  22. Elimanova, G.G., Batyrshin, N.N., and Kharlampidi, Kh.E., Kinet. Catal., 2017, vol. 58, no. 1, pp. 46–50.

    Article  CAS  Google Scholar 

  23. Shen, K., Liu, X., Lu, G., Miao, Y., Guo, Y., Wang, Y., and Guo, Y., J. Mol. Catal. A: Chem., 2013, vol. 373, pp. 78–84.

    Article  CAS  Google Scholar 

  24. Farzaneh, F., Zamanifar, E., and Williams, C.D., J. Mol. Catal. A: Chem., 2004, vol. 218, no. 2, pp. 203–209.

    Article  CAS  Google Scholar 

  25. Lin, K., Pescarmona, P.P., Houthoofd, K., Liang, D., Van Tendeloo, G., and Jacobs, P.A., J. Catal., 2009, vol. 263, no. 1, pp. 75–82.

    Article  CAS  Google Scholar 

  26. Rekkab-Hammoumraoui, I., Khaldi, I., Choukchou-Braham, A., and Bachir, R., Res. J. Pharm., Biol. Chem. Sci., 2013, vol. 4, pp. 935–946.

    CAS  Google Scholar 

  27. Khare, S. and Shrivastava, S., J. Mol. Catal. A: Chem., 2004, vol. 217, nos. 1–2, pp. 51–58.

  28. Zhang, X., Huang, Y., Guo, Y., Yuan, X., and Jiao, F., Microporous Mesoporous Mater., 2018, vol. 262, pp. 251–257.

    Article  CAS  Google Scholar 

  29. Liu, J., Fang, S., Jian, R., Wu, F., and Jian, P., Powder Technol., 2018, vol. 329, pp. 19–24.

    Article  CAS  Google Scholar 

  30. Miao, Y., Lu, G., Liu, X., Guo, Y., Wang, Y., and Guo, Y., J. Ind. Eng. Chem., 2010, vol. 16, no. 1, pp. 45–50.

    Article  CAS  Google Scholar 

  31. Li, K.-T., Lin, C.-C., and Lin, P.-H., in Mechanisms in Homogeneous and Heterogeneous Epoxidation Catalysis, Oyama, S.T., Ed., Amsterdam: Elsevier, 2008, ch. 14, pp. 373–386.

    Google Scholar 

Download references

Funding

This work was performed as part of a State Task for Boreskov Institute of Catalysis, Siberian Branch, Russian Academy of Sciences, project no. AAAA-A17-117041710083-5. It was supported by the Russian Foundation for Basic Research and the Government of Novosibirsk oblast, project no. 19-43-540008.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. I. Kuzhetsova.

Additional information

Translated by G. Levit

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karmadonova, I.E., Zudin, V.N., Kuznetsova, N.I. et al. Preparation of Ethylbenzene and Isopropylbenzene Hydroperoxides in the N-Hydroxyphthalimide–Fe(III) Homogeneous Catalytic System and Use of Solutions in the Epoxidation of Olefins. Catal. Ind. 12, 216–225 (2020). https://doi.org/10.1134/S2070050420030058

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070050420030058

Keywords:

Navigation