Skip to main content
Log in

On the Incorporation of Pristine and Pre-vitrified Alkaline Battery Waste into Non-structural Clay Bricks

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

The purpose of this work was to explore the incorporation of black manganese oxide powder extracted from alkaline batteries into sintered-clay bricks. The black manganese oxide powder was added into the clay mixture in two different states: pristine and pre-vitrified. Three levels of addition were evaluated according to the final wt% of manganese in the bricks: 0.0, 0.1, and 2.5. The resulting test-bricks were then assessed to determine the following physical and mechanical properties: color change, water absorption, water saturation coefficient, compressive strength, and leaching/efflorescence tendency. The results were statistically tested for significance and compared to a standard industrial formulation for non-structural sintered-clay bricks used locally in Girón, Santander (Colombia). In general, the properties of the test-bricks deviated slightly from the standard formulation only when the final content of manganese in the test-bricks reached 2.5 wt%. In particular, the test-bricks with 2.5 wt% of manganese added in the pre-vitrified state, showed a darker brown color, 1.7 % less water absorption, and a 68 % increase on compressive strength, when compared to the industrial reference red-clay bricks. It is worth to point out that none of the test-bricks studied showed efflorescence tendency. In conclusion, the work proves that the Mn-oxides contained in spent alkaline batteries can be successfully incorporated into nonstructural red clay bricks. These findings would help to ease the adoption of novel circular economy strategies in developing countries with no access to metallurgical facilities for battery recycling.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig 1
Fig 2
Fig 3
Fig 4
Fig 5
Fig 6
Fig 7
Fig 8
Fig 9
Fig 10
Fig 11
Fig 12
Fig 13
Fig 14

Similar content being viewed by others

References

  1. Viczek, S.A., Aldrian, A., Pomberger, R., Sarc, R.: Origins and carriers of Sb, As, Cd, Cl, Cr Co, Pb, Hg, and Ni in mixed solid waste—a literature-based evaluation. Waste Manag. 103, 87–112 (2020). https://doi.org/10.1016/j.wasman.2019.12.009

    Article  Google Scholar 

  2. Tetsopgang, S., Kuepouo, G.: Quantification and characterization of discarded batteries in Yaoundé, from the perspective of health, safety and environmental protection. Resour. Conserv. Recycl. 52, 1077–1081 (2008). https://doi.org/10.1016/j.resconrec.2008.04.006

    Article  Google Scholar 

  3. Daryabeigi Zand, A., Abduli, M.A.: Current situation of used household batteries in Iran and appropriate management policies. Waste Manag. 28, 2085–2090 (2008). https://doi.org/10.1016/j.wasman.2007.09.013

    Article  Google Scholar 

  4. Zambrano Colmenares, A., Romero Briceño, C.H., Moccia Paradisi, A., Orta Rodríguez, R.E., López Sanz, J.L., Delvasto Angarita, P.: Hydrometallurgical valuing of cathodic and anodic materials of used rechargeable batteries from the Ni-MH Type. Prod. + Limpia. 10, 51–63 (2015)

    Google Scholar 

  5. Ferronato, N., Torretta, V.: Waste mismanagement in developing countries: A review of global issues. Int. J. Environ. Res. Public Health. 16, 1–28 (2019). https://doi.org/10.3390/ijerph16061060

    Article  Google Scholar 

  6. Slack, R.J., Gronow, J.R., Voulvoulis, N.: Household hazardous waste in municipal landfills: Contaminants in leachate. Sci. Total Environ. 337, 119–137 (2005). https://doi.org/10.1016/j.scitotenv.2004.07.002

    Article  Google Scholar 

  7. Karnchanawong, S., Limpiteeprakan, P.: Evaluation of heavy metal leaching from spent household batteries disposed in municipal solid waste. Waste Manag. 29, 550–558 (2009). https://doi.org/10.1016/j.wasman.2008.03.018

    Article  Google Scholar 

  8. Godoy, K.A.M., Delvasto, P.L.: Quantification of the metals Ni, Cd, Zn, Mn, Fe and Co in leachates during degradation of three types of used commercial batteries (alkaline, Ni–Cd AND Ni–MH). Rev. Invest. (Caracas) 39, 131–156 (2015)

    Google Scholar 

  9. Godoy, K.A.M., Delvasto, P.L.: Soil pollution by heavy metals due to the presence of spent batteries. Rev. Invest. (Caracas) 88, 78–104 (2016)

    Google Scholar 

  10. Ogundele, L.T., Ayeku, P.O., Adebayo, A.S., Olufemi, A.P., Adejoro, I.A.: Pollution indices and potential ecological risks of heavy metals in the soil: A case study of municipal wastes site in Ondo State, Southwestern. Nigeria. Polytechnica. (2020). https://doi.org/10.1007/s41050-020-00022-6

    Article  Google Scholar 

  11. Espinosa, D.C.R., Bernardes, A.M., Tenório, J.A.S.: An overview on the current processes for the recycling of batteries. J. Power Sources. 135, 311–319 (2004). https://doi.org/10.1016/j.jpowsour.2004.03.083

    Article  Google Scholar 

  12. Hagelüken, C., Lee-Shin, J.U., Carpentier, A., Heron, C.: The EU circular economy and its relevance to metal recycling. Recycling. 1, 242–253 (2016). https://doi.org/10.3390/recycling1020242

    Article  Google Scholar 

  13. Nogueira, C.A., Margarido, F.: Battery recycling by hydrometallurgy: Evaluation of simultaneous treatment of several cell systems. In: Salazar-Villalpando, M.D., Neelameggham, N.R., Guillen, D.P., Pati, S., Krumdick, G.K. (eds.) Energy Technol 2012: Carbon dioxide management and other technologies. Wiley, Hoboken USA (2012)

    Google Scholar 

  14. Assefi, M., Maroufi, S., Yamauchi, Y., Sahajwalla, V.: Pyrometallurgical recycling of Li-ion, Ni–Cd and Ni–MH batteries: A minireview. Curr. Opin. Green Sustain. Chem. 24, 26–31 (2020). https://doi.org/10.1016/j.cogsc.2020.01.005

    Article  Google Scholar 

  15. Bernardes, A.M., Espinosa, D.C.R., Tenório, J.A.S.: Recycling of batteries: A review of current processes and technologies. J. Power Sources. 130, 291–298 (2004). https://doi.org/10.1016/j.jpowsour.2003.12.026

    Article  Google Scholar 

  16. Maryam Sadeghi, S., Jesus, J., Soares, H.M.V.M.: A critical updated review of the hydrometallurgical routes for recycling zinc and manganese from spent zinc-based batteries. Waste Manag. 113, 342–350 (2020). https://doi.org/10.1016/j.wasman.2020.05.049

    Article  Google Scholar 

  17. Sobianowska-Turek, A., Szczepaniak, W., Maciejewski, P., Gawlik-Kobylińska, M.: Recovery of zinc and manganese, and other metals (Fe, Cu, Ni Co, Cd, Cr, Na, K) from Zn–MnO2 and Zn–C waste batteries: Hydroxyl and carbonate co-precipitation from solution after reducing acidic leaching with use of oxalic acid. J. Power Sources. 325, 220–228 (2016). https://doi.org/10.1016/j.jpowsour.2016.06.042

    Article  Google Scholar 

  18. Gollakota, A.R.K., Gautam, S., Shu, C.M.: Inconsistencies of e-waste management in developing nations—facts and plausible solutions. J. Environ. Manage. 261, 110234 (2020). https://doi.org/10.1016/j.jenvman.2020.110234

    Article  Google Scholar 

  19. Pistoia, G., Wiaux, J.-P., Wolsky, S.P.: Used battery collection and recycling. Elsevier, Amsterdam (2001)

    Google Scholar 

  20. Espinosa, D.C.R., Bernardes, A.M., Tenório, J.A.S.: Brazilian policy on battery disposal and its practical effects on battery recycling. J. Power Sources. 137, 134–139 (2004). https://doi.org/10.1016/j.jpowsour.2004.02.023

    Article  Google Scholar 

  21. Ministry of the Environment Housing and Territorial Development (Republic of Colombia): Resolution 1297 (2010), https://www.habitatbogota.gov.co/resolucion-1297 (In Spanish)

  22. National Institute for Industrial Technology (INTI): Electrical battery management in Argentina (2016), https://www.inti.gob.ar/ambientesg/pdf/pilasybaterias2016.pdf (In Spanish)

  23. Ministry of the Interior and Public Security (Republic of Chile): Law 20.923 (2016), https://portal.mma.gob.cl/wp-content/uploads/2015/06/do-20160601-web.pdf (In Spanish)

  24. Savino, A., Solorzano, G., Quispe, C., Correal, M.C.: Waste management outlook for Latin America and the Caribbean. United Nations Environment Programme, Argentina, 9 October 2018

  25. Local Environmental Authority of the Cauca Valley Region (Republic of Colombia): Resolution 0100 No.0150–0895 (2016), https://ecotecsas.com/wp-content/uploads/2016/08/LICENCIA-ECOTEC-SAS.pdf (In Spanish)

  26. Tanong, K., Tran, L.H., Mercier, G., Blais, J.F.: Recovery of Zn (II), Mn (II), Cd (II) and Ni (II) from the unsorted spent batteries using solvent extraction, electrodeposition and precipitation methods. J. Clean. Prod. 148, 233–244 (2017). https://doi.org/10.1016/j.jclepro.2017.01.158

    Article  Google Scholar 

  27. Colmenares, A.Z., Salaverría, J.D., Delvasto, P.: Characterization of the chemical compounds obtained after using acetic acid as leaching agent in the hydrometallurgical treatment of spent Ni–MH batteries. Prod. + Limpia. 13, 19–29 (2018). https://doi.org/10.22507/pml.v13n1a2

    Article  Google Scholar 

  28. Molina-Silva, J., Vera-Serna, P., Delvasto, P.: Characterization of the metallic phase and the slag phase obtained during the inertization of the cathodes of spent alkaline batteries using liquid aluminum. J. Phys. Conf. Ser. (2019). https://doi.org/10.1088/1742-6596/1386/1/012056

    Article  Google Scholar 

  29. Bertuol, D.A., Amado, F.D.R., Veit, H., Ferreira, J.Z., Bernardes, A.M.: Recovery of nickel and cobalt from spent NiMH batteries by electrowinning. Chem. Eng. Technol. 35, 2084–2092 (2012). https://doi.org/10.1002/ceat.201200283

    Article  Google Scholar 

  30. Diáz-López, J.C., Angarita, J., Vargas-Angarita, C.Y., Blanco, S., Delvasto, P.: Electrolytic recovery of nickel and cobalt as multi-elemental coatings: An option for the recycling of spent Ni–MH batteries. J. Phys. Conf. Ser. (2018). https://doi.org/10.1088/1742-6596/1119/1/012003

    Article  Google Scholar 

  31. Quiroz, D., Pinto, J., Blanco, S., Delvasto, P.: Synthesis and characterization of Zn/Ni–Co bilayer coatings using the metals recovered from spent household batteries as raw materials. J. Phys. Conf. Ser. (2018). https://doi.org/10.1088/1742-6596/1119/1/012007

    Article  Google Scholar 

  32. Pinto, J., Quiroz, D., Delvasto, P., Blanco, S.: Characterization of a zinc-nickel alloy coating obtained from an electrolytic bath produced with spent batteries as raw materials. J. Phys. Conf. Ser. (2018). https://doi.org/10.1088/1742-6596/1119/1/012005

    Article  Google Scholar 

  33. Forero, B.J., Díaz-Salaverría, J.V., Delvasto, P., Gouveia, C.X.: Leaching characteristics of co-bearing glasses obtained from spent Li-ion batteries. In: Vilarinho, C. (ed.) WASTES–solutions, treatments and opportunities II–selected papers from the 4th edition of the International Conference Wastes: Solutions, Treatments and Opportunities, pp. 17–22. CRC Press, Boca Raton (2018)

    Google Scholar 

  34. Assías, S.G., Pabón, F., Cala, N., Delvasto, P.: Incorporation of fluorescent lamp waste into red-clay bricks: Defect formation, physical and mechanical properties. Waste and Biomass Valorization. (2020). https://doi.org/10.1007/s12649-020-01075-5

    Article  Google Scholar 

  35. Monteiro, S.N., Vieira, C.M.F.: On the production of fired clay bricks from waste materials: A critical update. Constr. Build. Mater. 68, 599–610 (2014). https://doi.org/10.1016/j.conbuildmat.2014.07.006

    Article  Google Scholar 

  36. Singh, H., Brar, G.S., Mudahar, G.S.: Evaluation of characteristics of fly ash-reinforced clay bricks as building material. J. Build. Phys. 40, 1–14 (2016). https://doi.org/10.1177/1744259116659662

    Article  Google Scholar 

  37. Babisk, M.P., Amaral, L.F., Silva Ribeiro, L., Vieira, C.M., Prado, U.S., Gadioli, M.C., Oliveira, M.S., da Luz, F.S., Monteiro, S.N., da Costa Garcia Filho, F.: Evaluation and application of sintered red mud and its incorporated clay ceramics as materials for building construction. J. Mater. Res. Technol. 9, 2186–2195 (2019). https://doi.org/10.1016/j.jmrt.2019.12.049

    Article  Google Scholar 

  38. Vieira, C.M.F., Sanchez, R., Monteiro, S.N., Lalla, N., Quaranta, N.: Recycling of electric arc furnace dust into red ceramic. J. Mater. Res. Technol. 2, 88–92 (2013). https://doi.org/10.1016/j.jmrt.2012.09.001

    Article  Google Scholar 

  39. Zhang, M., Chen, C., Mao, L., Wu, Q.: Use of electroplating sludge in production of fired clay bricks: Characterization and environmental risk evaluation. Constr. Build. Mater. 159, 27–36 (2018). https://doi.org/10.1016/j.conbuildmat.2017.10.130

    Article  Google Scholar 

  40. Shih, P.H., Wu, Z.Z., Chiang, H.L.: Characteristics of bricks made from waste steel slag. Waste Manag. 24, 1043–1047 (2004). https://doi.org/10.1016/j.wasman.2004.08.006

    Article  Google Scholar 

  41. Andreola, F., Barbieri, L., Lancellotti, I., Leonelli, C., Manfredini, T.: Recycling of industrial wastes in ceramic manufacturing: State of art and glass case studies. Ceram. Int. 42, 13333–13338 (2016). https://doi.org/10.1016/j.ceramint.2016.05.205

    Article  Google Scholar 

  42. Morais, A.S.C., Vieira, C.M.F., Rodriguez, R.J.S., Monteiro, S.N., Candido, V.S., Ferreira, C.L.: Fluorescent lamp glass waste incorporation into clay ceramic: A perfect solution. Jom. 68, 2425–2434 (2016). https://doi.org/10.1007/s11837-016-1985-z

    Article  Google Scholar 

  43. Abramov, O., Medvedev, A., Tomashevskaya, N.: TRIZ Roadmap for Identifying Adjacent Markets Oleg. In: Souchkov, S. and Mayer, O. (eds.) The 13th international conference TRIZ fest. pp. 382–390. Heilbronn, Germany Proceedings (2019)

  44. Rodrigues Fiuza, T.E., Göttert, D., Pereira, L.J., Masetto Antunes, S.R., de Chaves Andrade, A.V., Antunes, A.C., de Ferreira Souza, É.C.: Production of brown inorganic pigments with spinel structure using spent zinc-carbon batteries. Process. Appl. Ceram. 12, 319–325 (2018). https://doi.org/10.2298/PAC1804319R

    Article  Google Scholar 

  45. Im, H. hag: Method for making ceramic-coloring clay bricks using waste batteries powder. Patent US 2010/0090377 A1, (2010)

  46. Delvasto, P.L., Niño-Avendaño, C., Moreno, I.: Urban mining: spent batteries as a metalliferous resource. In: CIM 2015–VIII Congreso Internacional de Materiales. Paipa, Columbia, 28–30 October 2015

  47. American Society for Testing and Materials: ASTM C702–18 standard practice for reducing samples of aggregate to testing size. ASTM International, West Conshocken (2018)

    Google Scholar 

  48. Ferella, F., De Michelis, I., Vegliò, F.: Process for the recycling of alkaline and zinc-carbon spent batteries. J. Power Sources. 183, 805–811 (2008). https://doi.org/10.1016/j.jpowsour.2008.05.043

    Article  Google Scholar 

  49. Belardi, G., Ballirano, P., Ferrini, M., Lavecchia, R., Medici, F., Piga, L., Scoppettuolo, A.: Characterization of spent zinc-carbon and alkaline batteries by SEM-EDS. TGA/DTA and XRPD analysis. Thermochim. Acta. 526, 169–177 (2011). https://doi.org/10.1016/j.tca.2011.09.012

    Article  Google Scholar 

  50. Loryuenyong, V., Panyachai, T., Kaewsimork, K., Siritai, C.: Effects of recycled glass substitution on the physical and mechanical properties of clay bricks. Waste Manag. 29, 2717–2721 (2009). https://doi.org/10.1016/j.wasman.2009.05.015

    Article  Google Scholar 

  51. Goñi, S.M., Salvadori, V.O.: Color measurement: comparison of colorimeter vs. computer vision system. J. Food Meas. Charact. 11, 538–547 (2017). https://doi.org/10.1007/s11694-016-9421-1

    Article  Google Scholar 

  52. Soldat, D.J., Barak, P., Lepore, B.J.: Microscale colorimetric analysis using a desktop scanner and automated digital image analysis. J. Chem. Educ. 86, 617–620 (2009). https://doi.org/10.1021/ed086p617

    Article  Google Scholar 

  53. Ferreira, T., Rasband, W.: ImageJ User Guide, https://imagej.nih.gov/ij/index.html

  54. ASTM: Standard practice for calculation of color tolerances and color differences from instrumentally measured color coordinates. ASTM International, 93, 1–13. West Conshohocken, PA (2003).

  55. Mclaren, K., Taylor, P.F.: The derivation of hue-difference terms from CIELAB coordinates. Color Res. Appl. 6, 75–77 (1981). https://doi.org/10.1002/col.5080060207

    Article  Google Scholar 

  56. ICONTEC: NTC (Colombian Technical Standard) 4017 Method of Sampling and Test of Masonry Units and other Clay Products, (2005)

  57. Madejová, J.: FTIR techniques in clay mineral studies. Vib. Spectrosc. 31, 1–10 (2003). https://doi.org/10.1016/S0924-2031(02)00065-6

    Article  Google Scholar 

  58. Nayak, P.S., Singh, B.K.: Instrumental characterization of clay by FTIR, XRF, BET and TPD-NH3. Bull. Mater. Sci. 30, 235–238 (2007)

    Article  Google Scholar 

  59. Tiffo, E., Elimbi, A., Manga, J.D., Tchamba, A.B.: Red ceramics produced from mixtures of kaolinite clay and waste glass. Brazilian J. Sci. Technol. (2015). https://doi.org/10.1186/s40552-015-0009-9

    Article  Google Scholar 

  60. Madejová, J., Gates, W.P., Petit, S.: IR spectra of clay minerals. In: Gates, W. (ed.) Developments in clay science, pp. 107–149. Elsevier, Amsterdam (2017)

    Google Scholar 

  61. Beran, A., Libowitzky, E.: Spectroscopic methods in Mineralogy. The Mineralogical Society of Great Britain and Ireland (2004). https://doi.org/10.1180/EMU-notes.6

    Article  Google Scholar 

  62. Hu, P., Yang, H.: Insight into the physicochemical aspects of kaolins with different morphologies. Appl. Clay Sci. 74, 58–65 (2013). https://doi.org/10.1016/j.clay.2012.10.003

    Article  Google Scholar 

  63. Socrates, G.: Infrared and Raman characteristic group frequencies: Tables and charts. Wiley, Hoboken, USA (2001)

    Google Scholar 

  64. Friedel, R.A., Queiser, J.A.: Infrared and Raman Spectra of intractable carbonaceous substances—reassignments I N coal spectra. Am. Chem. Soc., Div. Fuel Chem. 1, 123–136 (1971)

    Google Scholar 

  65. Narita, E., Okabe, T.: The formation and some properties of hydrous manganese (IV) oxide. Bull. Chem. Soc. Jpn. 53, 525–532 (1979)

    Article  Google Scholar 

  66. Kupracz, P., Karczewski, J., Przëniak-Welenc, M., Szreder, N.A., Winiarski, M.J., Klimczuk, T., Barczy’nski, R.J.: Microstructure and electrical properties of manganese borosilicate glasses. J. Non. Cryst. Solids. 423–424, 68–75 (2015). https://doi.org/10.1016/j.jnoncrysol.2015.05.014

    Article  Google Scholar 

  67. Zaitizila, I., Halimah, M.K., Muhammad, F.D., Nurisya, M.S.: Influence of manganese doping on elastic and structural properties of silica borotellurite glass. J. Non. Cryst. Solids. 492, 50–55 (2018). https://doi.org/10.1016/j.jnoncrysol.2018.04.019

    Article  Google Scholar 

  68. Wang, S.T., Chen, M.L., Feng, Y.Q.: A meso-macroporous borosilicate monolith prepared by a sol-gel method. Microporous Mesoporous Mater. 151, 250–254 (2012). https://doi.org/10.1016/j.micromeso.2011.10.029

    Article  Google Scholar 

  69. Kaky, K.M., Lakshminarayana, G., Baki, S.O., Taufiq-Yap, Y.H., Kityk, I.V., Mahdi, M.A.: Structural, thermal, and optical analysis of zinc boro-aluminosilicate glasses containing different alkali and alkaline modifier ions. J. Non. Cryst. Solids. 456, 55–63 (2017). https://doi.org/10.1016/j.jnoncrysol.2016.10.044

    Article  Google Scholar 

  70. Gautam, C., Yadav, A.K., Singh, A.K.: A review on Infrared Spectroscopy of borate glasses with effects of different additives. ISRN Ceram. 2012, 1–17 (2012). https://doi.org/10.5402/2012/428497

    Article  Google Scholar 

  71. Coletti, C., Maritan, L., Cultrone, G., Dalconi, M.C., Hein, A., Molina, E., Mazzoli, C.: Recycling trachyte waste from the quarry to the brick industry: Effects on physical and mechanical properties, and durability of new bricks. Constr. Build. Mater. 166, 792–807 (2018). https://doi.org/10.1016/j.conbuildmat.2018.01.158

    Article  Google Scholar 

  72. Hwang, J.-Y., Huang, X., Garkida, A., Hein, A.: Waste colored glasses as sintering aid in ceramic tiles production. J. Miner. Mater. Charact. Eng. 05, 119–129 (2006). https://doi.org/10.4236/jmmce.2006.52008

    Article  Google Scholar 

  73. Federico, L., Chidiac, S.E., Drysdale, R.G.: The use of waste material in the manufacturing of clay brick. In: 10th Canadian Masonry Symposium. Banff, Alberta (2005)

  74. Molera, J., Coll, J., Labrador, A., Pradell, T.: Manganese brown decorations in 10th to 18th century Spanish tin glazed ceramics. Appl. Clay Sci. 82, 86–90 (2013). https://doi.org/10.1016/j.clay.2013.05.018

    Article  Google Scholar 

  75. Chidiac, S.E., Federico, L.M.: Effects of waste glass additions on the properties and durability of fired clay brick. Can. J. Civ. Eng. 34, 1458–1466 (2007). https://doi.org/10.1139/L07-120

    Article  Google Scholar 

  76. Netinger, I., Vračević, M., Ranogajec, J., Vučetić, S.: Evaluation of brick resistance to freeze/thaw cycles according to indirect procedures procedures. Gradjevinar. 66, 197–209 (2014). https://doi.org/10.14256/JCE.956.2013

    Article  Google Scholar 

  77. European Commission: International Chemical Safety Cards (ICSCs): Potassium hydroxide, https://www.ilo.org/dyn/icsc/showcard.display?p_lang=en&p_card_id=0357&p_version=2, (2017)

  78. European Commission: International Chemical Safety Cards (ICSCs): Potassium oxide, https://www.inchem.org/documents/icsc/icsc/eics0769.htm, (2017)

  79. Donald, I.W.: Waste immobilization in glass and ceramic based hosts: Radioactive, toxic, and hazardous wastes. Wiley, Wiltshire (2010)

    Book  Google Scholar 

  80. Phonphuak, N., Kanyakam, S., Chindaprasirt, P.: Utilization of waste glass to enhance physical-mechanical properties of fired clay brick. J. Clean. Prod. 112, 3057–3062 (2016). https://doi.org/10.1016/j.jclepro.2015.10.084

    Article  Google Scholar 

  81. Mehta, M., Scarborough, W., Armpriest, D.: Building construction: Principles, materials, and systems. Pearson, New Jersey (2013)

    Google Scholar 

  82. Meille, S., Lombardi, M., Chevalier, J., Montanaro, L.: Mechanical properties of porous ceramics in compression: On the transition between elastic, brittle, and cellular behavior. J. Eur. Ceram. Soc. 32, 3959–3967 (2012). https://doi.org/10.1016/j.jeurceramsoc.2012.05.006

    Article  Google Scholar 

  83. Nelson, L.O., Kong, P., Anderson, G., Choi, K., Kim, C.W., Shin, S.W.: Vitrification of Korean Low-Level Waste. In: Sundaram, S.K., Spearing, D.R., Vienna, J.D. (eds.) Proceedings of the Science and Technology in Addressing Environmetal Issues in the Ceramic Industry and Ceramic Science and Technology for the Nuclear Industry symposia held at the 104th Annual Meeting of The American Ceramic Society, pp. 177–184. The American Ceramic Society, St. Louis (2003)

  84. Paul, A.: Chemistry of glasses. Springer, Dordrecht (1982)

    Book  Google Scholar 

  85. U.S. Enviromental Protection Agency: Handbook of vitrification technologies for treatment of hazardous and radioactive waste (EPA/625/R-92/002). Bibliogov, Cincinnati (1992)

    Google Scholar 

  86. Brocken, H., Nijland, T.G.: White efflorescence on brick masonry and concrete masonry blocks, with special emphasis on sulfate efflorescence on concrete blocks. Constr. Build. Mater. 18, 315–323 (2004). https://doi.org/10.1016/j.conbuildmat.2004.02.004

    Article  Google Scholar 

  87. Pel, L., Huinink, H., Kopinga, K., Van Hees, R.P.J., Adan, O.C.G.: Efflorescence pathway diagram: Understanding salt weathering. Constr. Build. Mater. 18, 309–313 (2004). https://doi.org/10.1016/j.conbuildmat.2004.02.003

    Article  Google Scholar 

  88. Buxbaum, G., Pfaff, G.: Industrial inorganic pigments. Wiley, Weinheim (2005)

    Book  Google Scholar 

  89. Superintendence of Domiciliary Public Services (Republic of Colombia): National report on the reclaiming of solid waste (2017), https://www.andi.com.co/Uploads/22. Informa de Aprovechamiento 187302.pdf (In Spanish)

Download references

Acknowledgements

The authors would like to thank Miss. Cassandra Dewan and Mr. Wai Liam Ng for the thorough revisions and useful comments on the draft version of the manuscript. Mr. Ambrosio Carrillo is also acknowledged for his technical support during the experimental part of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergio G. Assías.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Assías, S.G., Clavijo, C., Usma, S. et al. On the Incorporation of Pristine and Pre-vitrified Alkaline Battery Waste into Non-structural Clay Bricks. Waste Biomass Valor 12, 3589–3604 (2021). https://doi.org/10.1007/s12649-020-01259-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-020-01259-z

Keywords

Navigation