Skip to main content

Advertisement

Log in

Transition Metal (Ni, Cu and Fe) Substituted Co3O4 – ZrO2 Catalysts for Lean Methane Combustion

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

Transition metal (Ni, Cu and Fe) substituted Co3O4–ZrO2 catalysts (NiCZ, CuCZ and FeCZ, respectively) were synthesized by PEG assisted sonochemical synthesis and tested for lean methane combustion. These catalysts offered complete combustion of methane by generating CO2 and steam as products. The strong metal-support interaction (SMSI) allowed the high catalytic activity at temperatures below 600 °C. All catalysts have shown superior stability for 20 h of time on stream conditions. In practical conditions, SO2 presence is obvious in methane feed, even trace levels of it inhibits the catalytic activity to a greater extent. In this study, the performance of catalysts and reaction mechanism was evaluated in presence of SO2 in reactant feed using packed bed catalytic activity studies and in situ FTIR. Among all catalysts, FeCZ has shown superior catalytic activity even under SO2 in the feed compared to NiCZ and CuCZ. The apparent activation energy was found to be larger in case of SO2 presence for all the catalysts. The structural and reducibility properties have been characterized with the XRD, XPS, TEM and H2–TPR studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Wei L, Geng P (2016) A review on natural gas/diesel dual fuel combustion, emissions and performance. Fuel Process Technol 142:264–278. https://doi.org/10.1016/j.fuproc.2015.09.018

    Article  CAS  Google Scholar 

  2. Gélin P, Urfels L, Primet M, Tena E (2003) Complete oxidation of methane at low temperature over Pt and Pd catalysts for the abatement of lean-burn natural gas fuelled vehicles emissions: influence of water and sulphur containing compounds. Catal Today 83(1):45–57. https://doi.org/10.1016/S0920-5861(03)00215-3

    Article  CAS  Google Scholar 

  3. Kakaee A-H, Paykani A, Ghajar M (2014) The influence of fuel composition on the combustion and emission characteristics of natural gas fueled engines. Renew Sustain Energy Rev 38:64–78. https://doi.org/10.1016/j.rser.2014.05.080

    Article  CAS  Google Scholar 

  4. Fernández J, Marín P, Díez FV, Ordóñez S (2015) Coal mine ventilation air methane combustion in a catalytic reverse flow reactor: Influence of emission humidity. Fuel Process Technol 133:202–209. https://doi.org/10.1016/j.fuproc.2015.02.005

    Article  CAS  Google Scholar 

  5. Gosiewski K, Pawlaczyk A (2014) Catalytic or thermal reversed flow combustion of coal mine ventilation air methane: what is better choice and when? Chem Eng J 238:78–85. https://doi.org/10.1016/j.cej.2013.07.039

    Article  CAS  Google Scholar 

  6. Eyssler A, Mandaliev P, Winkler A, Hug P, Safonova O, Figi R, Weidenkaff A, Ferri D (2010) The effect of the state of Pd on methane combustion in Pd-Doped LaFeO3. J Phys Chem C 114(10):4584–4594. https://doi.org/10.1021/jp911052s

    Article  CAS  Google Scholar 

  7. Specchia S, Conti F, Specchia V (2010) Kinetic studies on Pd/CexZr1−xO2 catalyst for methane combustion. Ind Eng Chem Res 49(21):11101–11111. https://doi.org/10.1021/ie100532x

    Article  CAS  Google Scholar 

  8. Guo X, Zhi G, Yan X, Jin G, Guo X, Brault P (2011) Methane combustion over Pd/ZrO2/SiC, Pd/CeO2/SiC, and Pd/Zr0.5Ce0.5O2/SiC catalysts. Catal. Commun. 12(10):870–874. https://doi.org/10.1016/j.catcom.2011.02.007

    Article  CAS  Google Scholar 

  9. Di Carlo G, Melaet G, Kruse N, Liotta LF, Pantaleo G, Venezia AM (2010) Combined sulfating and non-sulfating support to prevent water and sulfur poisoning of Pd catalysts for methane combustion. Chem Commun 46(34):6317–6319. https://doi.org/10.1039/C0CC00723D

    Article  Google Scholar 

  10. Yang N, Liu J, Sun Y, Zhu Y (2017) Au@PdOx with a PdOx-rich shell and Au-rich core embedded in Co3O4 nanorods for catalytic combustion of methane. Nanoscale 9(6):2123–2128. https://doi.org/10.1039/C6NR08700K

    Article  CAS  PubMed  Google Scholar 

  11. Colussi S, Arosio F, Montanari T, Busca G, Groppi G, Trovarelli A (2010) Study of sulfur poisoning on Pd/Al2O3 and Pd/CeO2/Al2O3 methane combustion catalysts. Catal Today 155(1):59–65. https://doi.org/10.1016/j.cattod.2009.02.019

    Article  CAS  Google Scholar 

  12. Xu J, Ouyang L, Mao W, Yang X-J, Xu X-C, Su J-J, Zhuang T-Z, Li H, Han Y-F (2012) Operando and kinetic study of low-temperature, lean-burn methane combustion over a Pd/γ-Al2O3 catalyst. ACS Catal 2(2):261–269. https://doi.org/10.1021/cs200694k

    Article  CAS  Google Scholar 

  13. Li G, Hu W, Huang F, Chen J, Gong M, Yuan S, Chen Y, Zhong L (2017) Pd catalyst supported on ZrO2-Al2O3 by double-solvent method for methane oxidation under lean conditions. Can J Chem Eng 95(6):1117–1123. https://doi.org/10.1002/cjce.22750

    Article  CAS  Google Scholar 

  14. Xu J, Li P, Song X, He C, Yu J, Han Y-F (2010) Operando Raman spectroscopy for determining the active phase in one- dimensional Mn1 − xCexO2±y nanorod catalysts during methane combustion. J Phys Chem Lett 1(10):1648–1654. https://doi.org/10.1021/jz1004522

    Article  CAS  Google Scholar 

  15. Li H, Lu G, Qiao D, Wang Y, Guo Y, Guo Y (2011) Catalytic methane combustion over Co3O4/CeO2 composite oxides prepared by modified citrate sol-gel method. Catal Lett 141(3):452–458. https://doi.org/10.1007/s10562-010-0513-y

    Article  CAS  Google Scholar 

  16. Li X, Liu Y, Deng J, Xie S, Zhao X, Zhang Y, Zhang K, Arandiyan H, Guo G, Dai H (2017) Enhanced catalytic performance for methane combustion of 3DOM CoFe2O4 by co-loading MnOx and Pd–Pt alloy nanoparticles. Appl Surf Sci 403:590–600. https://doi.org/10.1016/j.apsusc.2017.01.237

    Article  CAS  Google Scholar 

  17. Wang Z, Deng J, Liu Y, Yang H, Xie S, Wu Z, Dai H (2017) Three-dimensionally ordered macroporous CoCr2O4-supported Au–Pd alloy nanoparticles: highly active catalysts for methane combustion. Catal Today 281:467–476. https://doi.org/10.1016/j.cattod.2016.05.035

    Article  CAS  Google Scholar 

  18. Sutthiumporn K, Maneerung T, Kathiraser Y, Kawi S (2012) CO2 dry-reforming of methane over La0.8Sr0.2Ni0.8M0.2O3 perovskite (M = Bi Co, Cr, Cu, Fe): Roles of lattice oxygen on C-H activation and carbon suppression. Int. J. Hydrogen Energy 37(15):11195–11207. https://doi.org/10.1016/j.ijhydene.2012.04.059

    Article  CAS  Google Scholar 

  19. Singh SA, Madras G (2016) Sonochemical synthesis of Pt, Ru doped TiO2 for methane reforming. Appl Catal A: Gen 518:102–114. https://doi.org/10.1016/j.apcata.2015.10.047

    Article  CAS  Google Scholar 

  20. Tang M, Liu K, Roddick DM, Fan M (2018) Enhanced lattice oxygen reactivity over Fe2O3/Al2O3 redox catalyst for chemical-looping dry (CO2) reforming of CH4: synergistic La-Ce effect. J Catal 368:38–52. https://doi.org/10.1016/j.jcat.2018.09.022

    Article  CAS  Google Scholar 

  21. Hu S, He L, Wang Y, Su S, Jiang L, Chen Q, Liu Q, Chi H, Xiang J, Sun L (2016) Effects of oxygen species from Fe addition on promoting steam reforming of toluene over Fe–Ni/Al2O3 catalysts. Int J Hydrogen Energy 41(40):17967–17975. https://doi.org/10.1016/j.ijhydene.2016.07.271

    Article  CAS  Google Scholar 

  22. Weiss W, Schlögl R (2000) An integrated surface science approach towards metal oxide catalysis. Top Catal 13(1):75–90. https://doi.org/10.1023/A:1009041107437

    Article  CAS  Google Scholar 

  23. Papavasiliou J, Paxinou A, Słowik G, Neophytides S, Avgouropoulos G (2018) Steam reforming of methanol over nanostructured Pt/TiO2 and Pt/CeO2 catalysts for fuel cell applications. Catalysts. https://doi.org/10.3390/catal8110544

    Article  Google Scholar 

  24. Chen A, Guo H, Song Y, Chen P, Lou H (2017) Recyclable CeO2–ZrO2 and CeO2–TiO2 mixed oxides based Pt catalyst for aqueous-phase reforming of the low-boiling fraction of bio-oil. Int J Hydrogen Energy 42(15):9577–9588. https://doi.org/10.1016/j.ijhydene.2017.03.092

    Article  CAS  Google Scholar 

  25. Singh SA, Vishwanath K, Madras G (2017) Role of hydrogen and oxygen activation over Pt and Pd-doped composites for catalytic hydrogen combustion. ACS Appl Mater Interfaces 9(23):19380–19388. https://doi.org/10.1021/acsami.6b08019

    Article  CAS  PubMed  Google Scholar 

  26. Singh SA, Madras G (2015) Detailed mechanism and kinetic study of CO oxidation on cobalt oxide surfaces. Appl Catal A: Gen 504:463–475. https://doi.org/10.1016/j.apcata.2014.10.024

    Article  CAS  Google Scholar 

  27. Hegde MS, Madras G, Patil KC (2009) Noble metal ionic catalysts. Acc Chem Res 42(6):704–712. https://doi.org/10.1021/ar800209s

    Article  CAS  PubMed  Google Scholar 

  28. Baidya T, Gupta A, Deshpandey PA, Madras G, Hegde MS (2009) High oxygen storage capacity and high rates of CO oxidation and NO reduction catalytic properties of Ce1−xSnxO2 and Ce0.78Sn0.2Pd0.02O2-δ. J. Phys. Chem. C 113(10):4059–4068. https://doi.org/10.1021/jp8060569

    Article  CAS  Google Scholar 

  29. Roy S, Viswanath B, Hegde MS, Madras G (2008) Low-Temperature Selective Catalytic Reduction of NO with NH3 over Ti0.9M0.1O2-δ (M = Cr, Mn, Fe, Co, Cu). J. Phys. Chem. C 112 (15):6002–6012. doi:https://doi.org/10.1021/jp7117086

  30. Shannon R (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallographica Section A 32(5):751–767. https://doi.org/10.1107/S0567739476001551

    Article  Google Scholar 

  31. Varun Y, Sreedhar I, Singh SA (2020) Highly stable M/NiO–MgO (M = Co, Cu and Fe) catalysts towards CO2 methanation. Int. J. Hydrogen Energy. https://doi.org/10.1016/j.ijhydene.2020.07.212

  32. van Vegten N, Baidya T, Krumeich F, Kleist W, Baiker A (2010) Flame-made MgAl2−xMxO4 (M=Mn, Fe, Co) mixed oxides: Structural properties and catalytic behavior in methane combustion. Appl Catal B: Environ 97(3):398–406. https://doi.org/10.1016/j.apcatb.2010.04.026

    Article  CAS  Google Scholar 

  33. Ercolino G, Stelmachowski P, Grzybek G, Kotarba A, Specchia S (2017) Optimization of Pd catalysts supported on Co3O4 for low-temperature lean combustion of residual methane. Appl Catal B: Environ 206:712–725. https://doi.org/10.1016/j.apcatb.2017.01.055

    Article  CAS  Google Scholar 

  34. Kwak BS, Park N-K, Ryu SO, Baek J-I, Ryu H-J, Kang M (2017) Improved reversible redox cycles on MTiOx (M=Fe Co, Ni, and Cu) particles afforded by rapid and stable oxygen carrier capacity for use in chemical looping combustion of methane. Chem Eng J 309:617–627. https://doi.org/10.1016/j.cej.2016.10.040

    Article  CAS  Google Scholar 

  35. Chen Z, Wang S, Ding Y, Zhang L, Lv L, Wang M, Wang S (2017) Pd catalysts supported on Co3O4 with the specified morphologies in CO and CH4 oxidation. Appl Catal A: Gen 532:95–104. https://doi.org/10.1016/j.apcata.2016.12.021

    Article  CAS  Google Scholar 

  36. Hu W, Li G, Chen J, Huang F, Gong M, Zhong L, Chen Y (2017) Enhancement of activity and hydrothermal stability of Pd/ZrO2-Al2O3 doped by Mg for methane combustion under lean conditions. Fuel 194:368–374. https://doi.org/10.1016/j.fuel.2016.11.028

    Article  CAS  Google Scholar 

  37. Pu Z, Liu Y, Zhou H, Huang W, Zheng Y, Li X (2017) Catalytic combustion of lean methane at low temperature over ZrO2-modified Co3O4 catalysts. Appl Surf Sci 422:85–93. https://doi.org/10.1016/j.apsusc.2017.05.231

    Article  CAS  Google Scholar 

  38. Gao Q-X, Wang X-F, Di J-L, Wu X-C, Tao Y-R (2011) Enhanced catalytic activity of α-Fe2O3 nanorods enclosed with 110 and 001 planes for methane combustion and CO oxidation. Catal Sci Technol 1(4):574–577. https://doi.org/10.1039/C1CY00080B

    Article  CAS  Google Scholar 

  39. Khromova SA, Smirnov AA, Bulavchenko OA, Saraev AA, Kaichev VV, Reshetnikov SI, Yakovlev VA (2014) Anisole hydrodeoxygenation over Ni–Cu bimetallic catalysts: the effect of Ni/Cu ratio on selectivity. Appl Catal A: Gen 470:261–270. https://doi.org/10.1016/j.apcata.2013.10.046

    Article  CAS  Google Scholar 

  40. Gupta A, Waghmare UV, Hegde MS (2010) Correlation of oxygen storage capacity and structural distortion in transition-metal-, noble-metal-, and rare-earth-ion-substituted CeO2 from first principles calculation. Chem Mater 22(18):5184–5198. https://doi.org/10.1021/cm101145d

    Article  CAS  Google Scholar 

  41. Alalwan HA, Cwiertny DM, Grassian VH (2017) Co3O4 nanoparticles as oxygen carriers for chemical looping combustion: a materials characterization approach to understanding oxygen carrier performance. Chem Eng J 319:279–287. https://doi.org/10.1016/j.cej.2017.02.134

    Article  CAS  Google Scholar 

  42. Zhang F, Yao S, Liu Z, Gutiérrez RA, Vovchok D, Cen J, Xu W, Ramírez PJ, Kim T, Senanayake SD, Rodriguez JA (2018) Reaction of methane with MOx/CeO2 (M = Fe, Ni, and Cu) catalysts: in situ studies with time-resolved x-ray diffraction. J. Phys. Chem. C 122 (50):28739–28747. https://doi.org/10.1021/acs.jpcc.8b09319

  43. Chen J, Shi W, Li J (2011) Catalytic combustion of methane over cerium-doped cobalt chromite catalysts. Catal Today 175(1):216–222. https://doi.org/10.1016/j.cattod.2011.03.061

    Article  CAS  Google Scholar 

  44. Farrauto RJ (2012) Low-temperature oxidation of methane. Science 337(6095):659–660. https://doi.org/10.1126/science.1226310

    Article  CAS  PubMed  Google Scholar 

  45. Ercolino G, Stelmachowski P, Kotarba A, Specchia S (2017) Reactivity of mixed iron-cobalt spinels in the lean methane combustion. Catal Top. https://doi.org/10.1007/s11244-017-0826-9

    Article  Google Scholar 

  46. Shao C, Li W, Lin Q, Huang Q, Pi D (2017) Low temperature complete combustion of lean methane over cobalt-nickel mixed-oxide catalysts. Energy Technol 5(4):604–610. https://doi.org/10.1002/ente.201600402

    Article  CAS  Google Scholar 

  47. Peng Y, Za J, Chen J (2017) Mechanism and kinetics of methane combustion, Part I: thermal rate constants for hydrogen-abstraction reaction of CH4 + O(3P). J Phys Chem A 121(11):2209–2220. https://doi.org/10.1021/acs.jpca.6b12125

    Article  CAS  PubMed  Google Scholar 

  48. Pu Z, Zhou H, Zheng Y, Huang W, Li X (2017) Enhanced methane combustion over Co3O4 catalysts prepared by a facile precipitation method: effect of aging time. Appl Surf Sci 410:14–21. https://doi.org/10.1016/j.apsusc.2017.02.186

    Article  CAS  Google Scholar 

  49. Wilburn MS, Epling WS (2017) Sulfur deactivation and regeneration of mono- and bimetallic Pd-Pt methane oxidation catalysts. Appl Catal B Environ 206:589–598. https://doi.org/10.1016/j.apcatb.2017.01.050

    Article  CAS  Google Scholar 

  50. García-Vázquez M, Wang K, González-Carballo JM, Brown D, Landon P, Tooze R, García-García FR (2020) Iron and chromium-based oxides for residual methane abatement under realistic conditions: a study on sulfur dioxide poisoning and steam-induced inhibition. Appl Catal B: Environ 277:119139. https://doi.org/10.1016/j.apcatb.2020.119139

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors are grateful to the Centre for Nanoscience and Engineering (CeNSE), IISc for the XRD, XPS facilities and Department of Advanced Facilities for Microscopic and Macroscopic analysis (AFMM), IISc for providing TEM facility. GM thanks the Department of Science and Technology (DST), India for J.C. Bose fellowship (DST 1429). Dr. S.A. Singh thanks BITS-Pilani, Hyderabad campus for providing financial support by Research Initiation Grant (RIG-733) and Additional Competitive Research Grant (ACRG-906).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satyapaul A. Singh.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Research Involving Human and/or Animal Rights

There were no human or animal subjects involved in this research.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, S.A., Madras, G. & Sreedhar, I. Transition Metal (Ni, Cu and Fe) Substituted Co3O4 – ZrO2 Catalysts for Lean Methane Combustion. Top Catal 64, 243–255 (2021). https://doi.org/10.1007/s11244-020-01382-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-020-01382-0

Keywords

Navigation