Skip to main content

Advertisement

Log in

New Quantum Mechanics Based Methods for Multiscale Simulations with Applications to Reaction Mechanisms for Electrocatalysis

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

Electrocatalysis may provide the solution to some of the most important energy and environmental problems facing society: converting solar energy during the day to fuel (H2) that can provide power at night (hydrogen fuel cells) through water splitting, ·reducing the CO2 in the atmosphere to valuable chemicals (methane, ethylene, ethanol). However significant improvements must be made in the selectivity and activity of current electrocatalysts to obtain practical solutions. A great many experiments are underway to find such solutions, but the progress is slow. We consider that quantum mechanics based multiscale simulations can dramatically accelerate the progress by identifying the reaction mechanisms involved and the using in silico methods to predict the best modifications to Improve performance. We will discuss some of the progress in developing the methods needed and applying them to improving electrocatalysts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Cheng T, Goddard WA III, An Q, Xiao H, Merinov B, Morozov S (2017) Mechanism and kinetics of the electrocatalytic reaction responsible for the high cost of hydrogen fuel cells. Phys. Chem. Chem. Phys. 19(4):2666–2673

    Article  CAS  Google Scholar 

  2. Laio A, Parrinello M (2002) Proc Natl Acad Sci USA 99:12562

    Article  CAS  Google Scholar 

  3. van Duin ACT, Zou C, Joshi K, Bryantsev V, Goddard WA (2013) Chapter 6 in Computational Catalysis. In: Asthagiri A, Janik MJ (eds) A ReaxFF Reactive Force-field for Proton Transfer Reactions in Bulk Water and its Applications to Heterogeneous Catalysis. Royal Society of Chemistry, London, pp 223–243

    Google Scholar 

  4. Grgur BN, Marković NM, Ross PN (1997) Can. J. Chem. 75:1465–1471

    Article  CAS  Google Scholar 

  5. Paulus UA, Wokaun A, Scherer GG, Schmidt TJ, Stamenkovic V, Radmilovic V, Markovic NM, Ross PN (2002) J. Phys. Chem. B 106:4181–4191

    Article  CAS  Google Scholar 

  6. Li M, Zhao Z, Cheng T, Fortunelli A, Chen C-Y, Yu R, Zhang Q, Gu L, Merinov BV, Lin Z, Zhu E, Yu T, Jia Q, Guo J, Zhang L et al (2016) Ultrafine jagged platinum nanowires enable ultrahigh mass activity for the oxygen reduction reaction. Science 354(6318):1414–1419

    Article  CAS  Google Scholar 

  7. Chen Y, Cheng T, Goddard WA III (2020) Explanation of the dramatically improved oxygen reduction reaction of jagged platinum nanowires, 50 times better than Pt. JACS 142(19):8625–8632

    Article  CAS  Google Scholar 

  8. Cheng T, Xiao H, Goddard WA III (2017) Full atomistic reaction mechanism with kinetics for CO reduction on Cu(100) from ab initio molecular dynamics free-energy calculations at 298 K. Proc. Natl. Acad. Sci. USA 114(8):1795–1800

    Article  CAS  Google Scholar 

  9. Lum Y, Cheng T, Goddard WA III, Ager JW (2018) Electrochemical CO reduction builds solvent water into oxygenate products. J. Am. Chem. Soc. 140(30):9337–9340

    Article  CAS  Google Scholar 

  10. Jouny M, Lv J-J, Cheng T, Ko BH, Zhu J-J, Goddard WA III, Jiao F (2019) Formation of carbon–nitrogen bonds in carbon monoxide electrolysis. Nat. Chem. 11:846–851

    Article  CAS  Google Scholar 

  11. Feng X, Jiang K, Fan S, Kanan MW (2016) A direct grain-boundary-activity correlation for CO electroreduction on Cu nanoparticles. ACS Cent. Sci. 2:169–174z

    Article  CAS  Google Scholar 

  12. van Duin ACT, Dasgupta S, Lorant F, Goddard WA III (2001) ReaxFF: a reactive force field for hydrocarbons. J. Phys. Chem. A 105(41):9396–9409

    Article  Google Scholar 

  13. Rappe AK, Goddard WA (1991) Charge equilibration for molecular dynamics simulations. J. Phys. Chem. 95(8):3358–3363

    Article  CAS  Google Scholar 

  14. Naserifar S, Brooks DJ, Goddard WA III, Cvicek V (2017) Polarizable charge equilibration model for predicting accurate electrostatic interactions in molecules and solids. J. Chem. Phys. 146(12):124117

    Article  Google Scholar 

  15. Cheng M-J, Chenoweth K, Oxgaard J, van Duin A, Goddard WA III (2007) Single-site vanadyl activation, functionalization, and reoxidation reaction mechanism for propane oxidative dehydrogenation on the cubic V4O10 cluster. J. Phys. Chem. C 111(13):5115–5127

    Article  CAS  Google Scholar 

  16. Cheng T, Xiao H, Goddard WA III (2017) Nature of the active sites for CO reduction on copper nanoparticles; suggestions for optimizing performance. J. Am. Chem. Soc. 139(34):11642–11645

    Article  CAS  Google Scholar 

  17. Huang Y, Chen Y, Cheng T, Wang L-W, Goddard WA III (2018) Identification of the selective sites for electrochemical reduction of CO to C2+ products on copper nanoparticles by combining reactive force fields, density functional theory, and machine learning. ACS Energy Lett. 3(12):2983–2988

    Article  CAS  Google Scholar 

  18. Xiao H, Shin H, Goddard WA III (2018) Synergy between Fe and Ni in the optimal performance of (Ni, Fe)OOH catalysts for the oxygen evolution reaction. Proc. Natl. Acad. Sci. USA 115(23):5872–5877

    Article  CAS  Google Scholar 

  19. Shin H, Xiao H, Goddard WA III (2018) In silico discovery of new dopants for Fe-doped Ni oxyhydroxide (Ni1-xFexOOH) catalysts for oxygen evolution reaction. J. Am. Chem. Soc. 140(22):6745–6748

    Article  CAS  Google Scholar 

  20. Huang L, Shin H, Goddard WA III, Wang J (2020) NiCoIr oxyhydroxide nanosheet: highly efficient and stable electrocatalysts for the oxygen evolution reaction. Nano Energy 75:104885

    Article  CAS  Google Scholar 

  21. Liu C, Qian J, Ye Y, Zhou H, Sun C-J, Sheehan C, Zhang Z, Wan G, Liu Y-S, Guo J, Li S, Hwang S, Gunnoe TB, Goddard WA III, Zhang S (2020) Oxygen evolution reaction over catalytic single-site co in well-defined brookite TiO2 nanorod surface: experiment with quantum mechanics validation. Natur Catal (submitted)

  22. Shank A, Wang Y, Kaledin A, Braams BJ, Bowman JM (2009) Accurate ab initio and “hybrid” potential energy surfaces, intramolecular vibrational energies, and classical ir spectrum of the water dimer. J. Chem. Phys. 130(14):144314

    Article  Google Scholar 

  23. Oppenheim JJ, Naserifar S, Goddard WA III (2018) Extension of the polarizable charge equilibration model to higher oxidation states with applications to Ge, As, Se, Br, Sn, Sb, Te, I, Pb, Bi, Po, and At elements. J. Phys. Chem. A 122(2):639–645

    Article  CAS  Google Scholar 

  24. Kwon S, Naserifar S, Lee HM, Goddard WA III (2018) The polarizable charge equilibration model for transition-metal elements. J. Phys. Chem. A 122(48):9350–9358

    Article  CAS  Google Scholar 

  25. Naserifar S, Oppenheim JJ, Yang H, Zhou T, Zybin S, Rizk M, Goddard WA III (2019) Accurate non-bonded potentials based on periodic quantum mechanics calculations for use in molecular simulations of materials and systems. J. Chem. Phys. 151(15):154111

    Article  Google Scholar 

  26. Naserifar S, Goddard WA III (2018) The quantum mechanics-based polarizable force field for water simulations. J. Chem. Phys. 149(17):174502

    Article  Google Scholar 

Download references

Acknowledgements

The research on CO2 reduction was supported as part of the Joint Center for Artificial Photosynthesis, an Energy Innovation Hub funded by the U.S. Department of Energy, Office of Science. (DE-SC0004993). The research on ORR is funded by ONR (N00014-18-1-2155). The research on OER is funded by NSF (CBET-1805022). There is no direct funding for RexPoN, but it is supported by these other projects.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William A. Goddard III.

Ethics declarations

Conflict of interest

We declare no Conflicts of Interest.

Additional information

Dedication: To Robert Grasselli, pioneer in improving catalysis and catalysts through atomistic reasoning and mechanism. Inspiration for the Irsee Catalysis meetings and for my entry into the wonderful complex world of Heterogeneous catalysis.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goddard, W.A. New Quantum Mechanics Based Methods for Multiscale Simulations with Applications to Reaction Mechanisms for Electrocatalysis. Top Catal 63, 1658–1666 (2020). https://doi.org/10.1007/s11244-020-01369-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-020-01369-x

Navigation