Skip to main content
Log in

Combinatorial Designs, Difference Sets, and Bent Functions as Perfect Colorings of Graphs and Multigraphs

  • Published:
Siberian Mathematical Journal Aims and scope Submit manuscript

Abstract

We prove that (1): the characteristic function of each independent set in each regular graph attaining the Delsarte–Hoffman bound is a perfect coloring; (2): each transversal in a uniform regular hypergraph is an independent set in the vertex adjacency multigraph of a hypergraph attaining the Delsarte–Hoffman bound for this multigraph; and (3): the combinatorial designs with parameters \( t \)-\( (v,k,\lambda) \) and their \( q \)-analogs, difference sets, Hadamard matrices, and bent functions are equivalent to perfect colorings of some graphs of multigraphs, in particular, the Johnson graph \( J(n,k) \) for \( (k-1) \)-\( (v,k,\lambda) \)-designs and the Grassmann graph \( J_{2}(n,2) \) for bent functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Fon-Der-Flaass D. G., “A bound on correlation immunity,” Sib. Electr. Math. Reports, vol. 4, 133–135 (2007).

    MathSciNet  MATH  Google Scholar 

  2. Potapov V. N., “On perfect 2-colorings of the \( q \)-ary \( n \)-cube,” Discrete Math., vol. 312, no. 6, 1269–1272 (2012).

    Article  MathSciNet  Google Scholar 

  3. Avgustinovich S. V. and Mogilnykh I. Yu., “Perfect 2-colorings of Johnson graphs \( J(8,3) \) and \( J(8,4) \),” J. Appl. Industr. Math., vol. 17, no. 2, 3–19 (2010).

    MathSciNet  MATH  Google Scholar 

  4. Fon-Der-Flaass D. G., “Perfect 2-colorings of a hypercube,” Sib. Math. J., vol. 48, no. 4, 740–745 (2007).

    Article  MathSciNet  Google Scholar 

  5. Godsil C. and Meagher K.,Erdos–Ko-Rado Theorems: Algebraic Approaches, Cambridge Univ., Cambridge (2016).

    Book  Google Scholar 

  6. Krotov D. S., Mogilnykh I. Yu., and Potapov V. N., “To the theory of \( q \)-ary Steiner and other-type trades,” Discrete Math., vol. 339, no. 3, 1150–1157 (2016).

    Article  MathSciNet  Google Scholar 

  7. Glock S., Kühn D., Lo A., and Osthus D.,The Existence of Designs. arXiv:1401.3665v3 [math.CO] (2019). https://arXiv.org/abs/1401.3665v3

    MATH  Google Scholar 

  8. Keevash P.,The Existence of Designs via Iterative Absorption: Hypergraph \( F \)-Designs for Arbitrary \( F \). arXiv:1611.068275v3 [math.CO] (2020). https://arXiv.org/abs/1611.06827v3

    Google Scholar 

  9. Braun M., Etzion T., Östergard P. R. J., Vardy A., and Wassermann A., “Existence of \( q \)-analogs of Steiner systems,” Forum Math. Pi, vol. 4, e7 (2016).

    Article  MathSciNet  Google Scholar 

  10. Ma S. L., “A survey of partial difference sets,” Des. Codes Cryptogr., vol. 4, no. 4, 221–261 (1994).

    Article  MathSciNet  Google Scholar 

  11. Mesnager S.,Bent Functions: Fundamentals and Results, Springer, Cham, Switzerland (2016).

    Book  Google Scholar 

  12. McFarland R. L., “A family of difference sets in non-cyclic groups,” J. Combin. Theory Ser. A, vol. 15, no. 1, 1–10 (1973).

    Article  MathSciNet  Google Scholar 

Download references

Funding

The first author was partly supported by the Russian Science Foundation (Grant 18–11–00136) (Sections 1–3). The second author was partly supported by the Basic Scientific Research of the Siberian Branch of the Russian Academy of Sciences I.5.1 (Project 0314–2019–0016) (Sections 4–6).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. N. Potapov.

Additional information

To Semen Samsonovich Kutateladze on the occasion of his 75th jubilee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Potapov, V.N., Avgustinovich, S.V. Combinatorial Designs, Difference Sets, and Bent Functions as Perfect Colorings of Graphs and Multigraphs. Sib Math J 61, 867–877 (2020). https://doi.org/10.1134/S0037446620050109

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0037446620050109

Keywords

UDC

Navigation