Skip to main content
Log in

On Error Estimates of Local Approximation by Splines

  • Published:
Siberian Mathematical Journal Aims and scope Submit manuscript

Abstract

We consider the so-called simplest formula for local approximation by polynomial splines of order \( n \) (Schoenberg splines). The spline itself and all derivatives except that of the highest order, approximate a given function and its corresponding derivatives with the second order. We show that the jump of the highest derivative of order \( n-1 \); i. e., the value of discontinuity, divided by the meshsize, approximates the \( n \)th derivative of the original function. We found an asymptotic expansion of the jump.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Zavyalov Yu. S., Kvasov B. I., and Miroshnichenko V. L.,Methods of Spline Functions [Russian], Nauka, Moscow (1980).

    Google Scholar 

  2. De Boor C.,A Practical Guide to Splines. Revised ed., Springer, New York (2001) (Applied Mathematical Science; Vol. 27).

    MATH  Google Scholar 

  3. Volkov Yu. S., “Totally positive matrices in the methods of constructing interpolation splines of odd degree,” Siberian Adv. Math., vol. 15, no. 4, 96–125 (2005).

    MathSciNet  Google Scholar 

  4. Volkov Yu. S., “Interpolation by splines of even degree according to Subbotin and Marsden,” Ukrainian Math. J., vol. 66, no. 7, 994–1012 (2014).

    MathSciNet  MATH  Google Scholar 

  5. Volkov Yu. S., “The general problem of polynomial spline interpolation,” Proc. Steklov Inst. Math., vol. 300, no. suppl. 1, 187–198 (2018).

    MathSciNet  Google Scholar 

  6. Volkov Yu. S., “On a complete interpolation spline finding via B-splines,” Sib. Electr. Math. Reports, vol. 5, 334–338 (2008).

    MATH  Google Scholar 

  7. Volkov Yu. S., “Obtaining a banded system of equations in complete spline interpolation problem via B-spline basis,” Centr. Eur. J. Math., vol. 10, no. 1, 352–356 (2012).

    MathSciNet  MATH  Google Scholar 

  8. Volkov Yu. S., “De Boor–Fix functionals and Hermite boundary conditions in the polynomial spline interpolation problem,” Eur. J. Math. (2020). doi 10.1007/s4087902000406z

  9. Volkov Yu. S., “Convergence of spline interpolation processes and conditionality of systems of equations for spline construction,” Sb. Math., vol. 210, no. 4, 550–564 (2019).

    MathSciNet  MATH  Google Scholar 

  10. Volkov Yu. S., “Study of the convergence of interpolation processes with splines of even degree,” Sib. Math. J., vol. 60, no. 6, 973–983 (2019).

    MATH  Google Scholar 

  11. Schoenberg I. J., “On spline functions,” in: Inequalities: Proc. Symp. Wright–Patterson Air Force Base, Ohio, 1965, Academic, New York (1967), 255–291.

  12. Korovkin P. P.,Linear Operators and Approximation Theory, Hindustan, Delhi (1960).

    Google Scholar 

  13. Bogdanov V. V., Volkov Yu. S., Miroshnichenko V. L., and Shevaldin V. T., “Shape-preserving interpolation by cubic splines,” Math. Notes, vol. 88, no. 6, 798–805 (2010).

    MathSciNet  MATH  Google Scholar 

  14. Bogdanov V. V. and Volkov Yu. S., “Shape-preservation conditions for cubic spline interpolation,” Siberian Adv. Math., vol. 29, no. 4, 231–262 (2019).

    Article  Google Scholar 

  15. Volkov Yu. S. and Shevaldin V. T., “Shape preserving conditions for the spline interpolation of the second degree in the sense of Subbotin and Marsden,” Trudy Inst. Mat. i Mekh. UrO RAN, vol. 18, no. 4, 145–152 (2012).

    Google Scholar 

  16. Volkov Yu. S. and Subbotin Yu. N., “Fifty years of Schoenberg’s problem on the convergence of spline interpolation,” Proc. Steklov Inst. Math., vol. 288, no. 1, 222–237 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  17. Shevaldin V. T.,Approximation by Local Splines [Russian], Ural Branch of the Russian Academy of Sciences, Ekaterinburg (2014).

    MATH  Google Scholar 

  18. Subbotin Yu. N., “Inheritance of monotonicity and convexity in local approximations,” Comp. Math. Math. Phys., vol. 33, no. 7, 879–884 (1993).

    MathSciNet  MATH  Google Scholar 

  19. Shevaldin V. T., “Approximation by local parabolic splines with arbitrary node spacing,” Sib. Zh. Vychisl. Mat., vol. 8, no. 1, 77–88 (2005).

    MATH  Google Scholar 

  20. Ovchinnikova T. È., “Exact estimates of the local approximation error by cubic splines. A formula that is exact on first-degree polynomials,” Vychisl. Sist., vol. 128, 39–59 (1988).

    MATH  Google Scholar 

  21. Shevaldin V. T., Strelkova E. V., and Volkov Yu. S., “Local approximation by splines with displacement of nodes,” Siberian Adv. Math., vol. 23, no. 1, 69–75 (2013).

    MathSciNet  MATH  Google Scholar 

  22. Zheludev V. A., “Local spline approximation on a uniform mesh,” URSS Comp. Math. Math. Phys., vol. 27, no. 5, 8–19 (1987).

    MATH  Google Scholar 

  23. Neuman E., “Moments and Fourier transforms of B-splines,” J. Comput. Appl. Math., vol. 7, no. 1, 51–62 (1981).

    MathSciNet  MATH  Google Scholar 

  24. Zheludev V. A., “Representation of the approximational error term and sharp estimates for some local splines,” Math. Notes, vol. 48, no. 3, 911–919 (1990).

    MathSciNet  MATH  Google Scholar 

  25. Zheludev V. A., “Local splines of defect 1 on a uniform mesh,” Sib. J. Comput. Math., vol. 1, no. 2, 123–156 (1992).

    MathSciNet  MATH  Google Scholar 

  26. Beutel L., Gonska H., Kacsó D., and Tachev G., “On variation-diminishing Schoenberg operators: new quantitative statements,” in: Multivariate Approximation and Interpolation with Applications. Proc. 6th Int. Workshop MAIA 2001 (Almuñécar, Spain, 2001), Acad. Ciencias Exactas, Físicas, Químicas y Naturales de Zaragoza, Zaragoza (2002), 9–58.

  27. Gonska H., Wozniczka M., and Zeilfelder F., “A note on approximation properties of derivatives of Schoenberg splines,” Mathematica (Cluj), vol. 52, no. 1, 15–29 (2010).

    MathSciNet  MATH  Google Scholar 

  28. Ahlberg J. H., Nilson E. N., and Walsh J. L.,The Theory of Splines and Their Applications, Academic, New York (1967).

    MATH  Google Scholar 

  29. Kindalev B. S., “On asymptotics of the jump of highest derivative for a polynomial spline,” Siberian Adv. Math., vol. 12, no. 2, 48–55 (2002).

    MathSciNet  MATH  Google Scholar 

  30. Volkov Yu. S. and Miroshnichenko V. L., “Approximation of derivatives by jumps of interpolating splines,” Math. Notes, vol. 89, no. 1, 138–141 (2011).

    MathSciNet  MATH  Google Scholar 

  31. De Boor C. and Fix G. J., “Spline approximation by quasiinterpolants,” J. Approx. Theory, vol. 8, no. 1, 19–45 (1973).

    MathSciNet  MATH  Google Scholar 

  32. Lyche T. and Schumaker L. L., “Local spline approximation methods,” J. Approx. Theory, vol. 15, no. 4, 294–325 (1975).

    MathSciNet  MATH  Google Scholar 

Download references

Funding

The study was carried out within the framework of the state contract of the Sobolev Institute of Mathematics (Project No. 0314–2019–0013) and with partial financial support by the Russian Foundation for Basic Research (RFBR) and the German Science Foundation (DFG) according to the joint German–Russian research project 19–51–12008.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. S. Volkov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Volkov, Y.S., Bogdanov, V.V. On Error Estimates of Local Approximation by Splines. Sib Math J 61, 795–802 (2020). https://doi.org/10.1134/S0037446620050031

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0037446620050031

Keywords

UDC

Navigation