Skip to main content
Log in

Classes of Maximal Surfaces on Carnot Groups

  • Published:
Siberian Mathematical Journal Aims and scope Submit manuscript

Abstract

Under study are the graph mappings constructed from the contact mappings of arbitrary Carnot groups. We establish the well-posedness conditions for the problem of maximal surfaces, introduce a suitable notion of the increment of the (sub-Lorentzian) area functional, and prove that this functional is differentiable. The necessary maximality conditions for graph surfaces are described in terms of the area functional as well as in terms of sub-Lorentzian mean curvature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Karmanova M. B., “Area of graph surfaces on Carnot groups with sub-Lorentzian structure,” Dokl. Math., vol. 99, no. 2, 145–148 (2019).

    Article  MathSciNet  MATH  Google Scholar 

  2. Karmanova M. B., “Graphs of nonsmooth contact mappings on Carnot groups with sub-Lorentzian structure,” Dokl. Math., vol. 99, no. 3, 282–285 (2019).

    Article  MathSciNet  MATH  Google Scholar 

  3. Karmanova M. B., “The area of graphs on arbitrary Carnot groups with sub-Lorentzian structure,” Sib. Math. J., vol. 61, no. 4, 648–670 (2020).

    Article  Google Scholar 

  4. Miklyukov V. M., Klyachin A. A., and Klyachin V. A.,Maximal Surfaces in Minkowski Space-Time (2011). http://www.uchimsya.info/maxsurf.pdf

    MATH  Google Scholar 

  5. Berestovskii V. N. and Gichev V. M., “Metrized left-invariant orders on topological groups,” St. Petersburg Math. J., vol. 11, no. 4, 543–565 (2000).

    MathSciNet  MATH  Google Scholar 

  6. Grochowski M., “Reachable sets for the Heisenberg sub-Lorentzian structure on \( 𝕉^{3} \). An estimate for the distance function,” J. Dyn. Control Syst., vol. 12, no. 2, 145–160 (2006).

    MathSciNet  MATH  Google Scholar 

  7. Grochowski M., “Properties of reachable sets in the sub-Lorentzian geometry,” J. Geom. Phys., vol. 59, no. 7, 885–900 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  8. Grochowski M., “Normal forms and reachable sets for analytic Martinet sub-Lorentzian structures of Hamiltonian type,” J. Dyn. Control Syst., vol. 17, no. 1, 49–75 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  9. Grochowski M., “Reachable sets for contact sub-Lorentzian metrics on \( 𝕉^{3} \). Application to control affine systems with the scalar input,” J. Math. Sci., vol. 177, no. 3, 383–394 (2011).

    MathSciNet  MATH  Google Scholar 

  10. Grochowski M., “The structure of reachable sets for affine control systems induced by generalized Martinet sub-Lorentzian metrics,” ESAIM Control Optim. Calc. Var., vol. 18, no. 4, 1150–1177 (2012).

    Article  MathSciNet  MATH  Google Scholar 

  11. Grochowski M., “The structure of reachable sets and geometric optimality of singular trajectories for certain affine control systems in \( 𝕉^{3} \). The sub-Lorentzian approach,” J. Dyn. Control Syst., vol. 20, no. 1, 59–89 (2014).

    MathSciNet  MATH  Google Scholar 

  12. Grochowski M., “Geodesics in the sub-Lorentzian geometry,” Bull. Polish Acad. Sci. Math., vol. 50, no. 2, 161–178 (2002).

    MathSciNet  MATH  Google Scholar 

  13. Grochowski M., “Remarks on the global sub-Lorentzian geometry,” Anal. Math. Phys., vol. 3, no. 4, 295–309 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  14. Korolko A. and Markina I., “Nonholonomic Lorentzian geometry on some H-type groups,” J. Geom. Anal., vol. 19, no. 4, 864–889 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  15. Korolko A. and Markina I., “Geodesics on H-type quaternion groups with sub-Lorentzian metric and their physical interpretation,” Complex Anal. Oper. Theory, vol. 4, no. 3, 589–618 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  16. Krym V. R. and Petrov N. N., “Equations of motion of a charged particle in a five-dimensional model of the general theory of relativity with a nonholonomic four-dimensional velocity space,” Vestn. St. Petersburg Univ. Math., vol. 40, no. 1, 52–60 (2007).

    Article  MathSciNet  MATH  Google Scholar 

  17. Krym V. R. and Petrov N. N., “The curvature tensor and the Einstein equations for a four-dimensional nonholonomic distribution,” Vestn. St. Petersburg Univ. Math., vol. 41, no. 3, 256–265 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  18. Craig W. and Weinstein S., “On determinism and well-posedness in multiple time dimensions,” Proc. R. Soc. A., vol. 465, no. 2110, 3023–3046 (2008).

    MathSciNet  MATH  Google Scholar 

  19. Bars I. and Terning J.,Extra Dimensions in Space and Time, Springer, New York (2010).

    Book  MATH  Google Scholar 

  20. Velev M., “Relativistic mechanics in multiple time dimensions,” Physics Essays, vol. 25, no. 3, 403–438 (2012).

    Article  Google Scholar 

  21. Karmanova M. and Vodopyanov S., “Geometry of Carnot–Carathéodory spaces, differentiability, coarea and area formulas,” in: Analysis and Mathematical Physics. Trends in Mathematics, Birkhäuser, Basel (2009), 233–335.

  22. Karmanova M. B., “The graphs of Lipschitz functions and minimal surfaces on Carnot groups,” Sib. Math. J., vol. 53, no. 4, 672–690 (2012).

    Article  MathSciNet  MATH  Google Scholar 

  23. Karmanova M. B., “Maximal graph surfaces on four-dimensional two-step sub-Lorentzian structures,” Sib. Math. J., vol. 57, no. 2, 274–284 (2016).

    Article  MathSciNet  MATH  Google Scholar 

  24. Karmanova M. B., “Maximal surfaces on five-dimensional group structures,” Sib. Math. J., vol. 59, no. 3, 442–457 (2018).

    Article  MathSciNet  MATH  Google Scholar 

  25. Karmanova M. B., “Minimal graph-surfaces on arbitrary two-step Carnot groups,” Russian Math., vol. 63, no. 5, 13–26 (2019).

    Article  MathSciNet  MATH  Google Scholar 

  26. Karmanova M. B., “Sufficient maximality conditions for surfaces on two-step sub-Lorentzian structures,” Dokl. Math., vol. 99, no. 6, 214–217 (2019).

    Article  MATH  Google Scholar 

  27. Folland G. B. and Stein E. M.,Hardy Spaces on Homogeneous Groups, Princeton Univ., Princeton (1982).

    MATH  Google Scholar 

  28. Pansu P., “Métriques de Carnot–Carathéodory et quasi-isométries des espaces symétriques de rang un,” Ann. Math., vol. 129, no. 1, 1–60 (1989).

    Article  MathSciNet  MATH  Google Scholar 

  29. Vodopyanov S., “Geometry of Carnot–Carathéodory spaces and differentiability of mappings,” in: The Interaction of Analysis and Geometry. Contemporary Mathematics, vol. 424, Amer. Math. Soc., Providence (2007), 247–301.

  30. Karmanova M. B., “The polynomial sub-Riemannian differentiability of some Hölder mappings of Carnot groups,” Sib. Math. J., vol. 58, no. 2, 232–254 (2017).

    Article  MathSciNet  MATH  Google Scholar 

  31. Karmanova M. B., “Two-step sub-Lorentzian structures and graph surfaces,” Izv. Math., vol. 84, no. 1, 52–94 (2020).

    Article  MathSciNet  MATH  Google Scholar 

  32. Karmanova M. B., “Area formulas for classes of Hölder continuous mappings of Carnot groups,” Sib. Math. J., vol. 58, no. 5, 817–836 (2017).

    Article  MathSciNet  MATH  Google Scholar 

Download references

Funding

The author was supported by the Russian Foundation for Basic Research (Grant 17–01–00875).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. B. Karmanova.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karmanova, M.B. Classes of Maximal Surfaces on Carnot Groups. Sib Math J 61, 803–817 (2020). https://doi.org/10.1134/S0037446620050043

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0037446620050043

Keywords

UDC

Navigation