Skip to main content
Log in

Chaos in Bohmian Quantum Mechanics: A Short Review

  • Published:
Regular and Chaotic Dynamics Aims and scope Submit manuscript

This article has been updated

Abstract

This is a short review of the theory of chaos in Bohmian quantum mechanics based on our series of works in this field. Our first result is the development of a generic theoretical mechanism responsible for the generation of chaos in an arbitrary Bohmian system (in 2 and 3 dimensions). This mechanism allows us to explore the effect of chaos on Bohmian trajectories and study in detail (both analytically and numerically) the different kinds of Bohmian trajectories where, in general, chaos and order coexist. Finally, we explore the effect of quantum entanglement on the evolution of the Bohmian trajectories and study chaos and ergodicity in qubit systems which are of great theoretical and practical interest. We find that the chaotic trajectories are also ergodic, i. e., they give the same final distribution of their points after a long time regardless of their initial conditions. In the case of strong entanglement most trajectories are chaotic and ergodic and an arbitrary initial distribution of particles will tend to Born’s rule over the course of time. On the other hand, in the case of weak entanglement the distribution of Born’s rule is dominated by ordered trajectories and consequently an arbitrary initial configuration of particles will not tend, in general, to Born’s rule unless it is initially satisfied. Our results shed light on a fundamental problem in Bohmian mechanics, namely, whether there is a dynamical approximation of Born’s rule by an arbitrary initial distribution of Bohmian particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Similar content being viewed by others

Change history

  • 22 January 2021

    Changes in the attributes of the ImageObject (img) tag in the HTML file

Notes

  1. BQM is also related to the hydrodynamical formulation of QM made by Madelung in 1927 [6].

  2. There are only exceptions referring to the measurement of time, as the one that has has been considered in detail by Delis, Efthymiopoulos and Contopoulos in [9].

  3. In quantum computing we define the qubit as the unit of quantum information. The physical realization of a qubit is a quantum mechanical system with two well-defined states [58].

References

  1. Ballentine, L. E., Quantum Mechanics: A Modern Development, Singapore: World Sci., 1998.

    MATH  Google Scholar 

  2. de Broglie, L., La structure atomique de la matière et du rayonnement et la mécanique ondulatoire, C. R. Acad. Sci. Paris, 1927, vol. 184, pp. 273–274.

    MATH  Google Scholar 

  3. de Broglie, L., Sur le rôle des ondes continues en mécanique ondulatoire, C. R. Acad. Sci. Paris, 1927, vol. 185, pp. 380–382.

    MATH  Google Scholar 

  4. Bohm, D., A Suggested Interpretation of the Quantum Theory in Terms of “Hidden” Variables: 1, Phys. Rev., 1952, vol. 85, no. 2, pp. 166–179.

    MathSciNet  MATH  Google Scholar 

  5. Bohm, D., A Suggested Interpretation of the Quantum Theory in Terms of “Hidden” Variables: 2, Phys. Rev., 1952, vol. 85, no. 2, pp. 180–193.

    MathSciNet  MATH  Google Scholar 

  6. Madelung, E., Quantentheorie in hydrodynamischer Form, Z. Phys., 1927, vol. 40, pp. 322–326.

    MATH  Google Scholar 

  7. Bell, J. S., Speakable and Unspeakable in Quantum Mechanics: Collected Papers on Quantum Philosophy, Cambridge: Cambridge Univ. Press, 1987.

    MATH  Google Scholar 

  8. Holland, P. R., The Quantum Theory of Motion: An Account of the de Broglie – Bohm Causal Interpretation of Quantum Mechanics, Cambridge: Cambridge Univ. Press, 1995.

    MATH  Google Scholar 

  9. Delis, N., Efthymiopoulos, C., and Contopoulos, G., Quantum Vortices and Trajectories in Particle Diffraction, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 2012, vol. 22, no. 9, 1250214, 17 pp.

    MathSciNet  MATH  Google Scholar 

  10. Wyatt, R. E., Quantum Dynamics with Trajectories: Introduction to Quantum Hydrodynamics, New York: Springer, 2005.

    MATH  Google Scholar 

  11. Nikolić, H., Would Bohr Be Born If Bohm Were Born before Born?, Am. J. Phys., 2008, vol. 76, no. 2, pp. 143–146.

    Google Scholar 

  12. Pladevall, X. O. and Mompart, J., Applied Bohmian Mechanics: From Nanoscale Systems to Cosmology, Singapore: Jenny Stanford Publ., 2019.

    MATH  Google Scholar 

  13. Sanz, Á. S. and Miret-Artés, S., A Trajectory Description of Quantum Processes. 1. Fundamentals: A Bohmian Perspective, Berlin: Springer, 2012.

    MATH  Google Scholar 

  14. Sanz, Á. S. and Miret-Artés, S., A Trajectory Description of Quantum Processes. 2. Applications: A Bohmian Perspective, Berlin: Springer, 2014.

    MATH  Google Scholar 

  15. Sanz, Á. S., Bohm’s Approach to Quantum Mechanics: Alternative Theory or Practical Picture?, Front. Phys., 2019, vol. 14, no. 1, 11301, pp.

    Google Scholar 

  16. Kocsis, S., Braverman, B., Ravets, S., Stevens, M. J., Mirin, R. P., Shalm, L. K., and Steinberg, A. M., Observing the Average Trajectories of Single Photons in a Two-Slit Interferometer, Science, 2011, vol. 332, no. 6034, pp. 1170–1173.

    MATH  Google Scholar 

  17. Berry, M. V., The Bakerian Lecture, 1987: Quantum Chaology, Proc. Roy. Soc. London Ser. A, 1987, vol. 413, no. 1844, pp. 183–198.

    MathSciNet  Google Scholar 

  18. Gutzwiller, M. C., Chaos in Classical and Quantum Mechanics, New York: Springer, 2013.

    MATH  Google Scholar 

  19. Robnik, M., Fundamental Concepts of Quantum Chaos, Eur. Phys. J. Spec. Top., 2016, vol. 225, pp. 959–976.

    Google Scholar 

  20. Dürr, D., Goldstein, S., and Zanghi, N., Quantum Chaos, Classical Randomness, and Bohmian Mechanics, J. Stat. Phys., 1992, vol. 68, pp. 259–270.

    MathSciNet  MATH  Google Scholar 

  21. Parmenter, R. H. and Valentine, R. W., Deterministic Chaos and the Causal Interpretation of Quantum Mechanics, Phys. Lett. A, 1995, vol. 201, no. 1, pp. 1–8.

    MathSciNet  MATH  Google Scholar 

  22. Faisal, F. H. M. and Schwengelbeck, U., Unified Theory of Lyapunov Exponents and a Positive Example of Deterministic Quantum Chaos, Phys. Lett. A, 1995, vol. 207, no. 1–2, pp. 31–36.

    MathSciNet  MATH  Google Scholar 

  23. Schwengelbeck, U. and Faisal, F. H. M., Definition of Lyapunov Exponents and KS Entropy in Quantum Dynamics, Phys. Lett. A, 1995, vol. 199, no. 5–6, pp. 281–286.

    MathSciNet  MATH  Google Scholar 

  24. Iacomelli, G. and Pettini, M., Regular and Chaotic Quantum Motions, Phys. Lett. A, 1996, vol. 212, no. 1–2, pp. 29–38.

    MathSciNet  MATH  Google Scholar 

  25. Sengupta, S. and Chattaraj, P., The Quantum Theory of Motion and Signatures of Chaos in the Quantum Behaviour of a Classically Chaotic System, Phys. Lett. A, 1996, vol. 215, no. 3–4, pp. 119–127.

    Google Scholar 

  26. García de Polavieja, G., Exponential Divergence of Neighboring Quantal Trajectories, Phys. Rev. A, 1996, vol. 53, no. 4, pp. 2059–2061.

    Google Scholar 

  27. Parmenter, R. H. and Valentine, R. W., Chaotic Causal Trajectories Associated with a Single Stationary State of a System of Noninteracting Particles, Phys. Lett. A, 1997, vol. 227, no. 1–2, pp. 5–14.

    MathSciNet  MATH  Google Scholar 

  28. Frisk, H., Properties of the Trajectories in Bohmian Mechanics, Phys. Lett. A, 1997, vol. 227, no. 3–4, pp. 139–142.

    MathSciNet  MATH  Google Scholar 

  29. Konkel, S. and Makowski, A., Regular and Chaotic Causal Trajectories for the Bohm Potential in a Restricted Space, Phys. Lett. A, 1998, vol. 238, no. 2–3, pp. 95–100.

    MathSciNet  MATH  Google Scholar 

  30. Wu, H. and Sprung, D., Quantum Chaos in Terms of Bohm Trajectories, Phys. Lett. A, 1999, vol. 261, no. 3–4, pp. 150–157.

    MathSciNet  MATH  Google Scholar 

  31. Cushing, J. T., Bohmian Insights into Quantum Chaos, Philos. Sci., 2000, vol. 67, pp. S430-S445.

    MathSciNet  Google Scholar 

  32. Makowski, A., Pepłowski, P., and Dembiński, S., Chaotic Causal Trajectories: The Role of the Phase of Stationary States, Phys. Lett. A, 2000, vol. 266, no. 4–6, pp. 241–248.

    MathSciNet  MATH  Google Scholar 

  33. Falsaperla, P. and Fonte, G., On the Motion of a Single Particle near a Nodal Line in the de Broglie – Bohm Interpretation of Quantum Mechanics, Phys. Lett. A, 2003, vol. 316, no. 6, pp. 382–390.

    MathSciNet  MATH  Google Scholar 

  34. Wisniacki, D. A. and Pujals, E. R., Motion of Vortices Implies Chaos in Bohmian Mechanics, Europhys. Lett., 2005, vol. 71, no. 2, pp. 159–165.

    MathSciNet  Google Scholar 

  35. Wisniacki, D. A., Pujals, E. R., and Borondo, F., Vortex Interaction, Chaos and Quantum Probabilities, Europhys. Lett., 2006, vol. 73, no. 5, pp. 671–676.

    MathSciNet  Google Scholar 

  36. Wisniacki, D. A., Pujals, E. R., and Borondo, F., Vortex Dynamics and Their Interactions in Quantum Trajectories, J. Phys. A, 2007, vol. 40, no. 48, pp. 14353–14368.

    MathSciNet  MATH  Google Scholar 

  37. Borondo, F., Luque, A., Villanueva, J., and Wisniacki, D. A., A Dynamical Systems Approach to Bohmian Trajectories in a 2D Harmonic Oscillator, J. Phys. A, 2009, vol. 42, no. 49, 495103, 14 pp.

    MathSciNet  MATH  Google Scholar 

  38. Sengupta, S., Khatua, M., and Chattaraj, P. K., Bohmian Trajectory from the “classical” Schrödinger Equation, Chaos, 2014, vol. 24, no. 4, 043123, 5 pp.

    MathSciNet  MATH  Google Scholar 

  39. Cesa, A., Martin, J., and Struyve, W., Chaotic Bohmian Trajectories for Stationary States, J. Phys. A, 2016, vol. 49, no. 39, 395301, 24 pp.

    MathSciNet  MATH  Google Scholar 

  40. Efthymiopoulos, C. and Contopoulos, G., Chaos in Bohmian Quantum Mechanics, J. Phys. A, 2006, vol. 39, no. 8, pp. 1819–1852.

    MathSciNet  MATH  Google Scholar 

  41. Contopoulos, G., Efthymiopoulos, C., and Harsoula, M., Order and Chaos in Quantum Mechanics, Nonlinear Phenom. Complex Syst., 2008, vol. 11, no. 2, pp. 107–120.

    MathSciNet  Google Scholar 

  42. Efthymiopoulos, C., Kalapotharakos, C., and Contopoulos, G., Origin of Chaos near Critical Points of Quantum Flow, Phys. Rev. E (3), 2009, vol. 79, no. 3, 036203, 18 pp.

    MathSciNet  Google Scholar 

  43. Tzemos, A. C., Contopoulos, G., and Efthymiopoulos, C., Bohmian Trajectories in an Entangled Two-Qubit System, Phys. Scr., 2019, vol. 94, no. 10, 105218, 20 pp.

    Google Scholar 

  44. Tzemos, A. C., Efthymiopoulos, C., and Contopoulos, G., Origin of Chaos near Three-Dimensional Quantum Vortices: A General Bohmian Theory, Phys. Rev. E, 2018, vol. 97, no. 4, 042201, 13 pp.

    Google Scholar 

  45. Contopoulos, G., Tzemos, A. C., and Efthymiopoulos, C., Partial Integrability of 3D Bohmian Trajectories, J. Phys. A, 2017, vol. 50, no. 19, 195101, 13 pp.

    MathSciNet  MATH  Google Scholar 

  46. Tzemos, A. C. and Contopoulos, G., Integrals of Motion in 3D Bohmian Trajectories, J. Phys. A, 2018, vol. 51, no. 7, 075101, 18 pp.

    MathSciNet  MATH  Google Scholar 

  47. Bohm, D. and Vigier, J. P., Model of the Causal Interpretation of Quantum Theory in Terms of a Fluid with Irregular Fluctuations, Phys. Rev. (2), 1954, vol. 96, pp. 208–216.

    MathSciNet  MATH  Google Scholar 

  48. Valentini, A., Signal-Locality, Uncertainty, and the Subquantum \(H\)-Theorem: 1, Phys. Lett. A, 1991, vol. 156, no. 1–2, pp. 5–11.

    MathSciNet  Google Scholar 

  49. Valentini, A., Signal-Locality, Uncertainty, and the Subquantum \(H\)-Theorem: 2, Phys. Lett. A, 1991, vol. 158, no. 1–2, pp. 1–8.

    MathSciNet  Google Scholar 

  50. Dürr, D., Goldstein, S., and Zanghi, N., Quantum Equilibrium and the Origin of Absolute Uncertainty, J. Statist. Phys., 1992, vol. 67, no. 5–6, pp. 843–907.

    MathSciNet  MATH  Google Scholar 

  51. Bohm, D. and Hiley, B. J., The Undivided Universe: An Ontological Interpretation of Quantum Theory, London: Routledge, 1993.

    Google Scholar 

  52. Wisniacki, D. A., Borondo, F., and Benito, R. M., Dynamics of Quantum Trajectories in Chaotic Systems, Europhys. Lett., 2003, vol. 64, no. 4, pp. 441–447.

    Google Scholar 

  53. Valentini, A. and Westman, H., Dynamical Origin of Quantum Probabilities, Proc. Roy. Soc. London Ser. A, 2005, vol. 461, no. 2053, pp. 253–272.

    MathSciNet  MATH  Google Scholar 

  54. Goldstein, S. and Struyve, W., On the Uniqueness of Quantum Equilibrium in Bohmian Mechanics, J. Stat. Phys., 2007, vol. 128, no. 5, pp. 1197–1209.

    MathSciNet  MATH  Google Scholar 

  55. Towler, M., Russell, N. J., and Valentini, A., Time Scales for Dynamical Relaxation to the Born Rule, Proc. Roy. Soc. London Ser. A, 2011, vol. 468, no. 2140, pp. 990–1013.

    MathSciNet  MATH  Google Scholar 

  56. Abraham, E., Colin, S., and Valentini, A., Long-Time Relaxation in Pilot-Wave Theory, J. Phys. A, 2014, vol. 47, no. 39, 395306, 19 pp.

    MathSciNet  MATH  Google Scholar 

  57. Tzemos, A. C. and Contopoulos, G., Chaos and Ergodicity in an Entangled Two-Qubit Bohmian System, Phys. Scr., 2020, vol. 95, no. 6, 065225, pp.

    Google Scholar 

  58. Nielsen, M. A. and Chuang, I. L., Quantum Computation and Quantum Information, Cambridge: Cambridge Univ. Press, 2000.

    MATH  Google Scholar 

Download references

Funding

This research was conducted in the framework of the program of the RCAAM of Athens "Study of the dynamical evolution of the entanglement and coherence in quantum systems".

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Athanasios C. Tzemos.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

MSC2010

37N20, 81Q50

APPENDIX

The analytical formula of the wave function (7.6) in the position representation reads

$$\displaystyle\Psi=c_{1}\Psi_{R}\Psi_{L}+c_{2}\Psi_{L}\Psi_{R}$$
$$\displaystyle=\frac{(\omega_{x}\omega_{y})^{1/4}}{\sqrt{\pi}}\exp\left\{\frac{i}{2}\left[{a_{0}}^{2}\big{(}\sin(2{\omega_{x}}t)+\sin(2{\omega_{y}}t)\big{)}-({\omega_{x}}+{\omega_{y}})t\right]\right\}$$
$$\displaystyle\quad\times\exp\Big{\{}-\frac{1}{2}(\omega_{x}x^{2}+\omega_{y}y^{2})-a_{0}^{2}[\cos^{2}(\omega_{x}t)+\cos^{2}(\omega_{y}t)]\Big{\}}$$
$$\displaystyle\quad\times\Big{\{}\exp\big{(}f_{x}-f_{y}-i(g_{x}-g_{y})\big{)}c_{1}+\exp(-f_{x}+f_{y}+i(g_{x}-g_{y})c_{2}\Big{\}},$$
(A.1)
where
$$\displaystyle f_{x}=\sqrt{2\omega_{x}}{a_{0}}x\cos(\omega_{x}t),\quad f_{y}=\sqrt{2\omega_{y}}{a_{0}}y\cos(\omega_{y}t)$$
(A.2)
$$\displaystyle g_{x}=\sqrt{2\omega_{x}}{a_{0}}x\sin(\omega_{x}t),\quad g_{y}=\sqrt{2\omega_{y}}{a_{0}}y\sin(\omega_{y}t).$$
(A.3)

The Bohmian equations of motion produced by the wave function (A.1) are

$$\frac{dx}{dt}=-\frac{\sqrt{2\omega_{x}}{a_{0}}\left[A\cos(\omega_{x}t)+B\sin(\omega_{x}t)\right]}{G},$$
(A.4)
$$\frac{dy}{dt}=\frac{\sqrt{2\omega_{y}}{a_{0}}\left[A\cos(\omega_{y}t)+B\sin(\omega_{y}t)\right]}{G},$$
(A.5)
where
$$A=2{c_{1}}{c_{2}}{e^{2f_{x}+2f_{y}}}\sin\big{(}2(g_{x}-g_{y})\big{)},\quad B={c_{1}}^{2}{e^{4f_{x}}}-{c_{2}}^{2}{e^{4f_{y}}}$$
(A.6)
and
$$G={c_{1}}^{2}{e^{4f_{x}+4f_{y}}}+2{c_{1}}{c_{2}}{e^{2f_{x}+2f_{y}}}\cos\big{(}2(g_{x}+g_{y})\big{)}+{c_{2}}^{2}.$$
(A.7)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Contopoulos, G., Tzemos, A.C. Chaos in Bohmian Quantum Mechanics: A Short Review. Regul. Chaot. Dyn. 25, 476–495 (2020). https://doi.org/10.1134/S1560354720050056

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1560354720050056

Keywords

Navigation