Skip to main content
Log in

Nonequilibrium Molecular Dynamics, Fractal Phase-Space Distributions, the Cantor Set, and Puzzles Involving Information Dimensions for Two Compressible Baker Maps

  • Published:
Regular and Chaotic Dynamics Aims and scope Submit manuscript

This article has been updated

Abstract

Deterministic and time-reversible nonequilibrium molecular dynamics simulations typically generate “fractal” (fractional-dimensional) phase-space distributions. Because these distributions and their time-reversed twins have zero phase volume, stable attractors “forward in time” and unstable (unobservable) repellors when reversed, these simulations are consistent with the second law of thermodynamics. These same reversibility and stability properties can also be found in compressible baker maps, or in their equivalent random walks, motivating their careful study. We illustrate these ideas with three examples: a Cantor set map and two linear compressible baker maps, N2\((q,p)\) and N3\((q,p)\). The two baker maps’ information dimensions estimated from sequential mappings agree, while those from pointwise iteration do not, with the estimates dependent upon details of the approach to the maps’ nonequilibrium steady states.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Change history

  • 22 January 2021

    Changes in the attributes of the ImageObject (img) tag in the HTML file

References

  1. Ford, J., The Fermi – Pasta – Ulam Problem: Paradox Turns Discovery, Phys. Rep., 1992, vol. 213, no. 5, pp. 271–310.

    Article  MathSciNet  Google Scholar 

  2. Alder, B. J. and Wainwright, T. E., Molecules in Motion, Sci. Am., 1959, vol. 201, no. 4, pp. 113–130.

    Article  Google Scholar 

  3. Gibson, J. B., Goland, A. N., Milgram, M., and Vineyard, G. H., Dynamics of Radiation Damage, Phys. Rev., 1960, vol. 120, no. 4, pp. 1229–1253.

    Article  Google Scholar 

  4. Hoover, W. G., De Groot, A. J., Hoover, C. G., Stowers, I. F., Kawai, T., Holian, B. L., Boku, T., Ihara, S., and Belak, J., Large-Scale Elastic-Plastic Indentation Simulations via Nonequilibrium Molecular Dynamics, Phys. Rev. A, 1990, vol. 42, no. 10, pp. 5844–5853.

    Article  Google Scholar 

  5. Nosé, Sh., A Unified Formulation of the Constant Temperature Molecular Dynamics Methods, J. Chem. Phys., 1984, vol. 81, no. 1, pp. 511–519.

    Article  Google Scholar 

  6. Nosé, Sh., A Molecular Dynamics Method for Simulations in the Canonical Ensemble, Mol. Phys., 2002, vol. 100, no. 1, pp. 191–198.

    Article  Google Scholar 

  7. Hoover, W. G., Canonical Dynamics: Equilibrium Phase-Space Distributions, Phys. Rev. A, 1985, vol. 31, no. 3, pp. 1695–1697.

    Article  Google Scholar 

  8. Karplus, M., “Spinach on the Ceiling”: A Theoretical Chemist’s Return to Biology, Annu. Rev. Biophys. Biomol. Struct., 2006, vol. 35, pp. 1–47.

    Article  Google Scholar 

  9. Holian, B. L., De Groot, A. J., Hoover, W. G., and Hoover, C. G., Time-Reversible Equilibrium and Nonequilibrium Isothermal-Isobaric Simulations with Centered-Difference Stoermer Algorithms, Phys. Rev. A, 1990, vol. 41, no. 8, pp. 4552–4553.

    Article  Google Scholar 

  10. Holian, B. L., Hoover, W. G., Moran, B., and Straub, G. K., Shock-Wave Structure via Nonequilibrium Molecular Dynamics and Navier – Stokes Continuum Mechanics, Phys. Rev. A, 1980, vol. 22, no. 6, pp. 2798–2808.

    Article  Google Scholar 

  11. Moran, B., Hoover, W. G., and Bestiale, S., Diffusion in a Periodic Lorentz Gas, J. Stat. Phys., 1987, vol. 48, pp. 709–726.

    Article  MathSciNet  Google Scholar 

  12. Holian, B. L., Hoover, W. G., and Posch, H. A., Resolution of Loschmidt’s Paradox: The Origin of Irreversible Behavior in Reversible Atomistic Dynamics, Phys. Rev. Lett., 1987, vol. 59, no. 1, pp. 10–13.

    Article  MathSciNet  Google Scholar 

  13. Hoover, W. G., Posch, H. A., Holian, B. L., Gillan, M. J., Mareschal, M., and Massobrio, C., Dissipative Irreversibility from Nosé’s Reversible Mechanics, Mol. Simulat., 1987, vol. 1, no. 1–2, pp. 79–86.

    Article  Google Scholar 

  14. Posch, H. A. and Hoover, W. G., Time-Reversible Dissipative Attractors in Three and Four Phase-Space Dimensions, Phys. Rev. E, 1997, vol. 55, no. 6, pp. 6803–6810.

    Article  MathSciNet  Google Scholar 

  15. Sprott, J. C., Hoover, W. G., and Hoover, C. G., Heat Conduction, and the Lack Thereof, in Time-Reversible Dynamical Systems: Generalized Nosé – Hoover Oscillators with a Temperature Gradient, Phys. Rev. E, 2014, vol. 89, no. 4, 042914, 6 pp.

    Article  Google Scholar 

  16. Hoover, W. G. and Holian, B. L., Kinetic Moments Method for the Canonical Ensemble Distribution, Phys. Lett. A, 1996, vol. 211, no. 5, pp. 253–257.

    Article  Google Scholar 

  17. Martyna, C. J., Klein, M. L., and Tuckerman, M., Nosé – Hoover Chain: The Canonical Ensemble via Continuous Dynamics, J. Chem. Phys., 1992, vol. 97, no. 4, pp. 2635–2643.

    Article  Google Scholar 

  18. Hoover, W. G. and Hoover, C. G., 2020 Ian Snook Prize Problem: Three Routes to the Information Dimensions for One-Dimensional Stochastic Random Walks and Their Equivalent Two-Dimensional Baker Maps, Comput. Methods Sci. Tech., 2019, vol. 25, no. 4, pp. 153–159.

    Article  Google Scholar 

  19. Hoover, W. G. and Posch, H. A., Chaos and Irreversibility in Simple Model Systems, Chaos, 1998, vol. 8, no. 2, pp. 366–373.

    Article  MathSciNet  Google Scholar 

  20. Kumičák, J., Irreversibility in a Simple Reversible Model, Phys. Rev. E (3), 2005, vol. 71, no. 1, 016115, 15 pp.

    Article  MathSciNet  Google Scholar 

  21. Hoover, W. G. and Hoover, C. G., Aspects of Dynamical Simulations, Emphasizing Nosé and Nosé – Hoover Dynamics and the Compressible Baker Map, Comput. Methods Sci. Tech., 2019, vol. 25, pp. 125–141.

    Google Scholar 

  22. Hoover, W. G. and Hoover, C. G., Random Walk Equivalence to the Compressible Baker Map and the Kaplan – Yorke Approximation to Its Information Dimension, arXiv:1909.04526 (2019).

  23. Grebogi, C., Ott, E., and Yorke, J. A., Roundoff-Induced Periodicity and the Correlation Dimension of Chaotic Attractors, Phys. Rev. A, 1988, vol. 38, no. 7, pp. 3688–3692.

    Article  MathSciNet  Google Scholar 

  24. Farmer, J. D., Information Dimension and the Probabilistic Structure of Chaos, Z. Naturforsch., 1982, vol. 37A, pp. 1304–1325.

    Article  MathSciNet  Google Scholar 

  25. Farmer, J. D., Ott, E., and Yorke, J. A., The Dimension of Chaotic Attractors, Phys. D, 1983, vol. 7, no. 1–3, pp. 153–180.

    Article  MathSciNet  Google Scholar 

  26. Kaplan, J. L. and Yorke, J. A., Chaotic Behavior of Multidimensional Difference Equations, in Functional Differential Equations and Approximation of Fixed Points, H.-O. Peitgen and H.-O. Walther (Ed.), Lecture Notes in Math., Berlin: Springer, 1979, pp. 204–227.

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William G. Hoover.

Additional information

MSC2010

01-08, 34-03, 70H14, 82C05

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hoover, W.G., Hoover, C.G. Nonequilibrium Molecular Dynamics, Fractal Phase-Space Distributions, the Cantor Set, and Puzzles Involving Information Dimensions for Two Compressible Baker Maps. Regul. Chaot. Dyn. 25, 412–423 (2020). https://doi.org/10.1134/S1560354720050020

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1560354720050020

Keywords

Navigation