Skip to main content
Log in

Structural, Thermal and Wetting Characteristics of Novel Low Bi-Low Ag Containing Sn–x.Ag–0.7Cu–1.0Bi (x = 0.5 to 1.5) Alloys for Electronic Application

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

Low drop failure tendency and reduced cost of low silver SAC alloys has provoked researchers to exploit their potential for portable electronics. Low Bi addition in near-eutectic SAC alloys has proven confinement of IMC layer. In order to exploit potential of Ag variation (0.5–1.5 wt%) on structural, thermal, wettability and IMCs layers growth during thermal aging in low Bi-low Ag, Sn–xAg–0.7Cu–1.0Bi alloys were investigated. The resulting microstructure were characterized by scanning electron microscopy, energy dispersive spectroscopy and X-ray diffraction. Furthermore, structure–property correlations were established. This study signifies that 1.5 wt% Ag is responsible for lower melting point (220.18 °C) and lower contact angle (33°) in low Bi-low Ag, Sn–xAg–0.7Cu–1.0Bi alloys. Moreover, increment in Ag content restricted the interfacial IMC layer growth during thermal aging making them reliable for use in portable electronics. The microstructural investigations inferred that 0.5 wt% Ag solder joint with Cu substrate had the highest growth rate (0.34 μm/h1/2) of IMC layer thickness while 1.5 wt% Ag solder joint had lowest growth rate (0.17 μm/h1/2).

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. A.A. El-Daly, A.E. Hammad, A. Fawzy, D.A. Nasrallh, Mater. Des. 43, 40 (2013)

    Article  CAS  Google Scholar 

  2. D.A.A. Shnawah, S.B.M. Said, M.F.M. Sabri, I.A. Badruddin, F.X. Che, Microelectron. Reliab. 52, 2701 (2012)

    Article  CAS  Google Scholar 

  3. K. Maslinda, A.S. Anasyida, M.S. Nurulakmal, J. Mater. Sci. Mater. Electron. 27, 489 (2016)

    Article  CAS  Google Scholar 

  4. Y.M. Leong, A.S.M.A. Haseeb, Materials (Basel) 9, 1 (2016)

    Article  Google Scholar 

  5. K. Kanlayasiri, K. Sukpimai, J. Alloys Compd. 668, 169 (2016)

    Article  CAS  Google Scholar 

  6. Y. Tang, S.M. Luo, G.Y. Li, Z. Yang, R. Chen, Y. Han, C.J. Hou, J. Electron. Mater. 47, 1673 (2018)

    Article  CAS  Google Scholar 

  7. M.H. Mahdavifard, M.F.M. Sabri, S.M. Said, S. Rozali, Microelectron. Eng. 208, 29 (2019)

    Article  CAS  Google Scholar 

  8. M. Yang, H. Ji, S. Wang, Y.H. Ko, C.W. Lee, J. Wu, M. Li, J. Alloys Compd. 679, 18 (2016)

    Article  CAS  Google Scholar 

  9. J. Wu, S. Xue, J. Wang, M. Wu, J. Alloys Compd. 784, 471 (2019)

    Article  CAS  Google Scholar 

  10. Y. Gu, X. Zhao, Y. Li, Y. Liu, Y. Wang, Z. Li, J. Alloys Compd. 627, 39 (2015)

    Article  CAS  Google Scholar 

  11. R. Sun, Y. Sui, J. Qi, F. Wei, Y. He, X. Chen, Q. Meng, Z. Sun, J. Electron. Mater. 46, 4197 (2017)

    Article  CAS  Google Scholar 

  12. A.A. El-Daly, A.M. El-Taher, S. Gouda, Mater. Des. 65, 796 (2015)

  13. Y. Liu, F. Sun, X. Liu, in Proceedings of 2010 International Forum on Strategic Technology (IFOST 2010), Ulsan, 13- 15 October 2010, (IEEE, New York, 2010), p. 343

  14. E. Hodúlová, M. Palcut, E. Lechovič, B. Šimeková, K. Ulrich, J. Alloys Compd. 509, 7052 (2011)

    Article  Google Scholar 

  15. R.K. Kaushik, U. Batra, J.D. Sharma, J. Alloys Compd. 745, 446 (2018)

    Article  CAS  Google Scholar 

  16. A.A. El-Daly, A.M. El-Taher, S. Gouda, J. Alloys Compd. 627, 268 (2015)

    Article  CAS  Google Scholar 

  17. A.E. Hammad, Mater. Des. 50, 108 (2013)

    Article  CAS  Google Scholar 

  18. L. Zhang, C.W. He, Y.H. Guo, J.G. Han, Y.W. Zhang, X.Y. Wang, Microelectron. Reliab. 52, 559 (2012)

    Article  CAS  Google Scholar 

  19. G. Zeng, S. Xue, L. Zhang, L. Gao, J. Mater. Sci. Mater. Electron. 22, 565 (2011)

    Article  CAS  Google Scholar 

  20. P. Deghaid Pereira, J. Eduardo Spinelli, A. Garcia, Mater. Des. 45, 377 (2013)

    Article  Google Scholar 

  21. L.R. Garcia, W.R. Osório, A. Garcia, Mater. Des. 32, 3008 (2011)

    Article  CAS  Google Scholar 

  22. L. Zhang, S.B. Xue, L.L. Gao, Z. Sheng, H. Ye, Z.X. Xiao, G. Zeng, Y. Chen, S.L. Yu, J. Mater. Sci. Mater. Electron. 21, 1 (2010)

    Article  Google Scholar 

  23. W. Dong, Y. Shi, Y. Lei, Z. Xia, F. Guo, J. Mater. Sci. Mater. Electron. 20, 1008 (2009)

    Article  CAS  Google Scholar 

  24. L. Gao, S. Xue, L. Zhang, Z. Sheng, F. Ji, W. Dai, S.L. Yu, G. Zeng, Microelectron. Eng. 87, 2025 (2010)

    Article  CAS  Google Scholar 

  25. A.A. El-Daly, A.E. Hammad, J. Alloys Compd. 505, 793 (2010)

    Article  CAS  Google Scholar 

  26. A.A. El-Daly, A.M. El-Taher, Mater. Des. 51, 789 (2013)

    Article  CAS  Google Scholar 

  27. M.F. Arenas, V.L. Acoff, J. Electron. Mater. 33, 1452 (2004)

    Article  CAS  Google Scholar 

  28. D.Q. Yu, J. Zhao, L. Wang, J. Alloys Compd. 376, 170 (2004)

    Article  CAS  Google Scholar 

  29. H. Lee, M. Chen, H. Jao, T. Liao, Mater. Sci. Eng. A 358, 134 (2003)

    Article  Google Scholar 

  30. J. Shen, M. Zhao, P. He, Y. Pu, J. Alloys Compd. 574, 451 (2013)

    Article  CAS  Google Scholar 

  31. P. Ratchev, B. Vandevelde, I. De Wolf, IEEE Trans. Device Mater. Reliab. 4, 5 (2004)

    Article  CAS  Google Scholar 

  32. X. Deng, R.S. Sidhu, P. Johnson, N. Chawla, Metall. Mater. Trans. A 36, 55 (2005)

    Article  Google Scholar 

  33. W.K. Choi, H.M. Lee, J. Electron. Mater. 29, 1207 (2000)

    Article  CAS  Google Scholar 

  34. J. Zhao, L. Qi, X.M. Wang, L. Wang, J. Alloys Compd. 375, 196 (2004)

    Article  CAS  Google Scholar 

  35. A. Sharma, S. Kumar, D.H. Jung, J.P. Jung, J. Mater. Sci. Mater. Electron. 28, 8116 (2017)

    Article  CAS  Google Scholar 

  36. J. Zhao, C. Cheng, L. Qi, C. Chi, J. Alloys Compd. 473, 382 (2009)

    Article  CAS  Google Scholar 

  37. F. Wang, Y. Huang, Z. Zhang, C. Yan, Materials (Basel) 10, 920 (2017)

    Article  Google Scholar 

  38. R. Tian, C. Hang, Y. Tian, L. Zhao, Mater. Sci. Eng. A 709, 125 (2018)

    Article  CAS  Google Scholar 

  39. X. Deng, G. Piotrowski, J.J. Williams, N. Chawla, J. Electron. Mater. 32, 1403 (2003)

    Article  CAS  Google Scholar 

  40. L. Xu, J.H.L. Pang, K.H. Prakash, T.H. Low, IEEE 28, 408 (2005)

    CAS  Google Scholar 

  41. M. Schaefer, R.A. Fournelle, J. Liang, J. Electron. Mater. 27, 1167 (1998)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raj Kumar Kaushik.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaushik, R.K., Batra, U. & Sharma, J.D. Structural, Thermal and Wetting Characteristics of Novel Low Bi-Low Ag Containing Sn–x.Ag–0.7Cu–1.0Bi (x = 0.5 to 1.5) Alloys for Electronic Application. Met. Mater. Int. 27, 4550–4563 (2021). https://doi.org/10.1007/s12540-020-00880-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-020-00880-w

Keywords

Navigation