Skip to main content
Log in

Thermal investigation and flow pattern analysis of a closed-loop pulsating heat pipe with binary mixtures

  • Technical Paper
  • Published:
Journal of the Brazilian Society of Mechanical Sciences and Engineering Aims and scope Submit manuscript

Abstract

The present study basically examines thermal performance and relevant flow phenomena of a flat plate closed-loop pulsating heat pipe (FP-CLPHP) filled with binary mixtures. The heat pipe has eight turns, each of which consisting of asymmetrical channel pairs having cross sections as 2 mm × 2 mm and 1 mm × 2 mm (width × height). Binary mixtures are generated as mixtures of ethanol (E) and pentane (P) with different mixing ratios. Mainly, effects of volume mixing ratio (E/P = 1:1, 1:3 and 3:1), vertical (90°) and horizontal orientation (0°) and filling ratio (30% and 60%) on thermal characteristics are investigated under different heat inputs. For examination of flow dynamics, images are obtained by using a high-speed camera at 1000 fps. The results show that variation of volumetric percentage of each component significantly changes thermal performance. Increasing pentane in the mixture improves the thermal performance, such that heat pipe with mixing ratio of E/P = 1:3 can properly operate even at horizontal position. On the other hand, increasing volume of ethanol in mixture leads to collapse of the FP-CLPHP at both orientations (0° and 90°). Generally, the filling ratio of 30% shows better thermal performance. Complex bubble–liquid interactions and dynamics play critical roles on thermal characteristics. Two novel characteristic phenomena are identified for non-uniform PHPs: (1) flooding phenomenon and (2) asymmetrical rapid bubble growth phenomenon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

\( A_{{\text{bi}}} \) :

Bubble interface area (m2)

\( A_{{\text{app}}} \) :

Shear force acting area (m2)

\( D_{\text{h}} \) :

Hydraulic diameter (m)

\( Q_{\text{i}} \) :

Heat input (W)

\( Q_{{\text{rh}}} \) :

Removed heat via cooling water (W)

\( R_{{\text{th}}} \) :

Total thermal resistance (°C W−1)

\( T \) :

Temperature (°C)

\( \alpha \) :

Angle between the heat pipe and horizontal position (°)

\( \mu \) :

Dynamic viscosity (Pa s)

\( \sigma \) :

Surface tension (N m−1)

\( \theta \) :

Contact angle (°)

c:

Condenser

e:

Evaporator

wi:

Cooling water inlet

wo:

Cooling water outlet

v:

Vapor

FR:

Filling ratio

HI:

Heat input

IA:

Inclination angle

PHP:

Pulsating heat pipe

FP-CLPHP:

Flat plate closed-loop pulsating heat pipe

References

  1. Akachi H (1990) Structure of a heat pipe. U.S. Patent 4,921,041

  2. Mehta K, Mehta N, Patel V (2020) Influence of the channel profile on the thermal resistance of closed-loop flat-plate oscillating heat pipe. J Braz Soc Mech Sci Eng 42:123. https://doi.org/10.1007/s40430-020-2213-x

    Article  Google Scholar 

  3. Yang H, Khandekar S, Groll M (2009) Performance characteristics of pulsating heat pipes as integral thermal spreaders. Int J Therm Sci 48:815–824. https://doi.org/10.1016/j.ijthermalsci.2008.05.017

    Article  Google Scholar 

  4. Abad HKS, Ghiasi M, Mamouri SJ, Shafii MB (2013) A novel integrated solar desalination system with a pulsating heat pipe. Desalination 311:206–210. https://doi.org/10.1016/j.desal.2012.10.029

    Article  Google Scholar 

  5. Wei A, Qu J, Qiu H, Wang C, Cao G (2019) Heat transfer characteristics of plug-in oscillating heat pipe with binary-fluid mixtures for electric vehicle battery thermal management. Int J Heat Mass Transf 135:746–760. https://doi.org/10.1016/j.ijheatmasstransfer.2019.02.021

    Article  Google Scholar 

  6. Liou TM, Chang SW, Cai WL, Lan IA (2019) Thermal fluid characteristics of pulsating heat pipe in radially rotating thin pad. Int J Heat Mass Transf 131:273–290. https://doi.org/10.1016/j.ijheatmasstransfer.2018.10.132

    Article  Google Scholar 

  7. Zhang XM, Xu JL, Zhou ZQ (2004) Experimental Study of a pulsating heat pipe using FC-72, ethanol, and water as working fluids. Exp Heat Transf 17:47–67. https://doi.org/10.1080/08916150490246546

    Article  Google Scholar 

  8. Clement J, Wang X (2013) Experimental investigation of pulsating heat pipe performance with regard to fuel cell cooling application. Appl Therm Eng 50:268–274

    Google Scholar 

  9. Qu J, Wang Q (2013) Experimental study on the thermal performance of vertical closed-loop oscillating heat pipes and correlation modeling. Appl Energy 112:1154–1160. https://doi.org/10.1016/j.apenergy.2013.02.030

    Article  Google Scholar 

  10. Han H, Cui X, Zhu Y, Sun S (2014) A comparative study of the behavior of working fluids and their properties on the performance of pulsating heat pipes (PHP). Int J Therm Sci 82:138–147. https://doi.org/10.1016/j.ijthermalsci.2014.04.003

    Article  Google Scholar 

  11. Tseng CY, Yang KS, Chien KH, Jeng MS, Wang CC (2014) Investigation of the performance of pulsating heat pipe subject to uniform/alternating tube diameters. Exp Therm Fluid Sci 54:85–92. https://doi.org/10.1016/j.expthermflusci.2014.01.019

    Article  Google Scholar 

  12. Wang J, Li FC, Li XB (2016) On the mechanism of boiling heat transfer enhancement by surfactant addition. Int J Heat Mass Transf 101:800–806. https://doi.org/10.1016/j.ijheatmasstransfer.2016.05.121

    Article  Google Scholar 

  13. Xing M, Wang R, Xu R (2018) Experimental study on thermal performance of a pulsating heat pipe with surfactant aqueous solution. Int J Heat Mass Transf 127:903–909. https://doi.org/10.1016/j.ijheatmasstransfer.2018.07.130

    Article  Google Scholar 

  14. Wang J, Xie J, Liu X (2019) Investigation on the performance of closed-loop pulsating heat pipe with surfactant. Appl Therm Eng 160:113998. https://doi.org/10.1016/j.applthermaleng.2019.113998

    Article  Google Scholar 

  15. Kang SW, Wang YC, Liu YC, Lo HM (2017) Visualization and thermal resistance measurements for a magnetic nanofluid pulsating heat pipe. Appl Therm Eng 126:1044–1050. https://doi.org/10.1016/j.applthermaleng.2017.02.051

    Article  Google Scholar 

  16. Nazari MA, Ghasempour R, Ahmadi MH, Heydarian G, Shafii MB (2018) Experimental investigation of graphene oxide nanofluid on heat transfer enhancement of pulsating heat pipe. Int Commun Heat Mass 91:90–94. https://doi.org/10.1016/j.icheatmasstransfer.2017.12.006

    Article  Google Scholar 

  17. Han H, Cui X, Zhu Y, Xu T, Sui Y, Sun S (2016) Experimental study on a closed-loop pulsating heat pipe (CLPHP) charged with water-based binary zeotropes and the corresponding pure fluids. Energy 109:724–736. https://doi.org/10.1016/j.energy.2016.05.061

    Article  Google Scholar 

  18. Zhu Y, Cui X, Han H, Sun S (2014) The study on the difference of the start-up and heat-transfer performance of the pulsating heat pipe with water–acetone mixtures. Int J Heat Mass Transf 77:834–842. https://doi.org/10.1016/j.ijheatmasstransfer.2014.05.042

    Article  Google Scholar 

  19. Wang W, Cui X, Zhu Y (2017) Heat transfer performance of a pulsating heat pipe charged with acetone-based mixtures. Heat Mass Transf 53:1983–1994. https://doi.org/10.1007/s00231-016-1958-3

    Article  Google Scholar 

  20. Xu R, Zhang C, Chen H, Wu Q, Wang R (2019) Heat transfer performance of pulsating heat pipe with zeotropic immiscible binary mixtures. Int J Heat Mass Transf 137:31–41. https://doi.org/10.1016/j.ijheatmasstransfer.2019.03.070

    Article  Google Scholar 

  21. Chien KH, Lin YT, Chen YR, Yang KS, Wang CC (2012) A novel design of pulsating heat pipe with fewer turns applicable to all orientations. Int J Heat Mass Transf 55:5722–5728. https://doi.org/10.1016/j.ijheatmasstransfer.2012.05.068

    Article  Google Scholar 

  22. Jang DS, Lee JS, Ahn JH, Kim D, Kim Y (2017) Flow patterns and heat transfer characteristics of flat plate pulsating heat pipes with various asymmetric and aspect ratios of the channels. Appl Therm Eng 114:211–220. https://doi.org/10.1016/j.applthermaleng.2016.11.189

    Article  Google Scholar 

  23. Spinato G, Borhani N, Thome JR (2016) Operational regimes in a closed loop pulsating heat pipe. Int J Therm Sci 102:78–88. https://doi.org/10.1016/j.ijthermalsci.2015.11.006

    Article  Google Scholar 

  24. Kline SJ, McClintock FA (1953) Describing uncertainties in single-sample experiments. Mech Eng 75:3–8

    Google Scholar 

  25. Shi S, Cui X, Han H, Weng J, Li Z (2016) A study of the heat transfer performance of a pulsating heat pipe with ethanol-based mixtures. Appl Therm Eng 102:1219–1227. https://doi.org/10.1016/j.applthermaleng.2016.04.014

    Article  Google Scholar 

  26. Reay DA, Kew PA, McGlen RJ (2014) Heat pipes: theory, design and applications, 6th edn. Butterworth-Heinemann, Elsevier

    Google Scholar 

  27. Messerly JF, Guthrie GB, Todd SS, Finke HL (1967) Low-temperature thermal data for n-pentane, n-heptadecane, and n-octadecane. Revised thermodynamic functions for the n-alkanes, C5–C18. J Chem Eng Data 12:338–346

    Google Scholar 

  28. Wan Z, Wang X, Feng C (2020) Heat transfer performances of the capillary loop pulsating heat pipes with spring-loaded check valve. Appl Therm Eng 167:114803. https://doi.org/10.1016/j.applthermaleng.2019.114803

    Article  Google Scholar 

  29. Liu X, Han X, Wang Z, Hao G, Zhang Z, Chen Y (2020) Application of an anti-gravity oscillating heat pipe on enhancement of waste heat recovery. Energy Convers Manag 205:112404. https://doi.org/10.1016/j.enconman.2019.112404

    Article  Google Scholar 

  30. Lee HJ, Liu DY, Yao SC (2010) Flow instability of evaporative micro-channels. Int J Heat Mass Transf 53:1740–1749. https://doi.org/10.1016/j.ijheatmasstransfer.2010.01.016

    Article  MATH  Google Scholar 

  31. Alam T, Li W, Yang F, Chang W, Li J, Wang Z, Khan J, Li C (2016) Force analysis and bubble dynamics during flow boiling in silicon nanowire microchannels. Int J Heat Mass Transf 101:915–926. https://doi.org/10.1016/j.ijheatmasstransfer.2016.05.045

    Article  Google Scholar 

Download references

Acknowledgements

The Scientific and Technological Research Council of Turkey (TUBITAK) supported this study with the project number of 217M341.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Burak Markal.

Ethics declarations

Conflict of interest

The authors declared that there is no conflict of interest.

Additional information

Technical Editor: Ahmad Arabkoohsar.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article has been selected for a Topical Issue of this journal on Nanoparticles and Passive-Enhancement Methods in Energy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Markal, B., Varol, R. Thermal investigation and flow pattern analysis of a closed-loop pulsating heat pipe with binary mixtures. J Braz. Soc. Mech. Sci. Eng. 42, 549 (2020). https://doi.org/10.1007/s40430-020-02618-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40430-020-02618-6

Keywords

Navigation